據上次博客已經2周多了,一直沒寫,慚愧。 一、高斯模型簡介 首先介紹一下單高斯模型(GSM)和高斯混合模型(GMM)的大概思想。 1.單高斯模型 如題,就是單個高斯分布模型or正態分布模型。想必大家都知道正態分布,這一分布反映了自然界普遍存在的有關變量 ...
參考url: https: jakevdp.github.io PythonDataScienceHandbook . gaussian mixtures.html 高斯混合模型 GMM 為什么會出現:k means算法的缺陷 某些點的歸屬簇比其他點的歸屬簇更加明確,比如中間的兩個簇似乎有一小塊區域重合,因此對重合部分的點將被分配到哪個簇不是很有信心,而且k means模型本身沒有度量簇的分配概率 ...
2020-03-21 19:32 0 1376 推薦指數:
據上次博客已經2周多了,一直沒寫,慚愧。 一、高斯模型簡介 首先介紹一下單高斯模型(GSM)和高斯混合模型(GMM)的大概思想。 1.單高斯模型 如題,就是單個高斯分布模型or正態分布模型。想必大家都知道正態分布,這一分布反映了自然界普遍存在的有關變量 ...
本文就高斯混合模型(GMM,Gaussian Mixture Model)參數如何確立這個問題,詳細講解期望最大化(EM,Expectation Maximization)算法的實施過程。 單高斯分布模型GSM 多維變量X服從高斯分布時,它的概率密度函數PDF為: x是維度為d的列向量 ...
文章目錄 1. 1. 高斯模型簡介 1.1. 1.1. 單高斯模型 1.2. 1.2. 高斯混合模型 1.3. 1.3. 高斯混合模型與K-means異同 ...
高斯混合模型 高斯混合模型回顧 根據EM的定義,我們重新回顧一下高斯混合中的ϕ,µ和Σ參數擬合。為了簡單起見,這里我們在M-步中僅更新φ,µj,而把Σj的更新留給大家自己推導。 E-步是很容易的,根據上面的推導,我們計算: w(i)j = Qi(z(i)= j ) = P(z(i ...
混合高斯模型簡介 混合高斯模型基於多變量正 態分布。 類gmdistribution通過使用EM算法來擬合數據,它基於各觀測量計算各成分密度的后驗概率。 高斯混合模型常用於聚類,通過選擇成分最大化后驗概率來完成聚類。 與k-means聚類相似,高斯 ...
使用單高斯模型來建模有一些限制,例如,它一定只有一個眾數,它一定對稱的。舉個例子,如果我們對下面的分布建立單高斯模型,會得到顯然相差很多的模型: 於是,我們引入混合高斯模型(Gaussian Mixture Model,GMM)。高斯混合模型就是多個單高斯模型的和。它的表達能力十分強 ...
一、什么是高斯混合模型(GMM) 高斯混合模型(Gaussian Mixed Model)指的是多個高斯分布函數的線性組合,通常用於解決同一集合下的數據包含多個不同的分布的情況,如解決分類情況 如下圖,明顯分成兩個聚類。這兩個聚類中的點分別通過兩個不同的正態分布隨機生成而來。如果只用一個 ...
玩了混合高斯模型,先轉幾個參考資料,曾經試過自己寫代碼,結果發現混合高斯模型矩陣運算對我的計算能力要求很高,結果失敗了,上網找了代碼學習一下大牛們的編程思想,事實證明數學寫出來的公式雖然很美,但是現實寫代碼的時候要考慮各種問題~~~ 1.http://www.cnblogs.com ...