參考知乎上的解釋。解答的非常明白易懂。https://www.zhihu.com/question/27670909 大致內容: 1、解答了先驗概率和后驗概率的概念。后驗概率更加的准確,大部分機器學習模型嘗試得到的也是后驗概率 2、貝葉斯公式的推導 3、貝葉斯公式用於后驗概率的求解。轉換 ...
數據來自於一個不完全清楚的過程。以投擲硬幣為例,嚴格意義上講,我們無法預測任意一次投硬幣的結果是正面還是反面,只能談論正面或反面出現的概率。在投擲過程中有大量會影響結果的不可觀測的變量,比如投擲的姿勢 力度 方向,甚至風速和地面的材質都會影響結果。也許這些變量實際上是可以觀測的,但我們對這些變量對結果的影響缺乏必要的認知,所以退而求其次,把投擲硬幣作為一個隨機過程來建模,並用概率理論對其進行分析 ...
2019-12-26 18:02 0 1040 推薦指數:
參考知乎上的解釋。解答的非常明白易懂。https://www.zhihu.com/question/27670909 大致內容: 1、解答了先驗概率和后驗概率的概念。后驗概率更加的准確,大部分機器學習模型嘗試得到的也是后驗概率 2、貝葉斯公式的推導 3、貝葉斯公式用於后驗概率的求解。轉換 ...
的理論依據就是貝葉斯公式。 2.理論依據 2.1 最小錯誤率貝葉斯決策 貝葉斯決策的基本理論依據就是貝葉 ...
【此文介紹了貝葉斯公式】 現在舉一個例子說明怎么使用貝葉斯公式來做決策。 例子: 假設有100個人,每個人都有自己的生日。1年有12個月,假設這100個人的生日從1月到12月的人數的分布情況如下: 3 4 5 7 10 13 14 15 ...
在【前一個例子】中已經舉例說明了如何用貝葉斯公式計算后驗概率,然后依據后驗概率來做決策。 1、什么是行為? 但是,有時候,后驗概率本身只能說明具有特征x的樣本屬於ωi類的可能性有多少,卻沒能表示如果將樣本分到ωi類時的代價有多大。 在此,引入行為的概念。 分類器的設計初衷很簡單,就是進行 ...
1. 統計決策的基本概念 20世紀40年代,Wald提出了把統計推斷問題看成是人與自然的一種博弈過程,由此建立了統計決策理論。 統計決策問題的三個要素 在前幾章講的統計問題,都可以歸結為一個統計決策問題,也就是建立所謂的統計決策函數,統計決策問題由三個因素組成: 樣本空間和分布族 ...
從貝葉斯方法談到貝葉斯網絡: http://blog.csdn.net/zdy0_2004/article/details/41096141 1 思考模式 比如往台球桌上扔一個球,這個球落會落在何處呢?如果是不偏不倚的把球拋出去,那么此球落在台球桌上的任一位置都有着相同的機會,即球落在 ...
本文內容主要參考Steven M.Kay的《統計信號處理基礎——估計與檢測理論》,該書中譯本分類為“國外電子與通信教材系列”,應該會有一定局限性。本文是我看過該書后的一點點總結。 1.從最大似然估計看經典估計理論 最大似然估計(Maximum Likelihood ...
這種情況:我們可以很容易直接得出P(A|B),P(B|A)則很難直接得出,但我們更關心P(B|A),貝 ...