原文:直觀理解梯度,以及偏導數、方向導數和法向量等

目錄 寫在前面 偏導數 方向導數 梯度 等高線圖中的梯度 隱函數的梯度 小結 參考 博客:blog.shinelee.me 博客園 CSDN 寫在前面 梯度是微積分中的基本概念,也是機器學習解優化問題經常使用的數學工具 梯度下降算法 ,雖然常說常聽常見,但其細節 物理意義以及幾何解釋還是值得深挖一下,這些不清楚,梯度就成了 熟悉的陌生人 ,僅僅 記住就完了 在用時難免會感覺不踏實,為了 用得放心 ...

2019-10-21 17:59 3 7395 推薦指數:

查看詳情

方向導數導數梯度

為了更好理解,給出一道例題: 那么導數是什么呢,例如就是與X軸方向平行時的方向導數。 證明 ...

Mon Apr 15 20:29:00 CST 2019 0 1162
方向導數導數梯度

方向導數導數梯度 一、總結 一句話總結: 方向導數:曲面的每一個點是有很多條切線的,不同方向的切線就是方向導數導數:例如f(x0,y0)對x求導就是與X軸方向平行時的方向導數梯度梯度方向是最大的方向導數,是f(x,y)這一點增長最快的方向。 二、方向導數 ...

Sat Jun 27 02:48:00 CST 2020 0 3314
導數導數方向導數梯度梯度下降

導數 設有一元函數  \(\normalsize y=f(x)\)   則函數在點 \(\normalsize x_{0}\) 處的導數為    \(\normalsize f^{'}(x_{0})=\lim_{\Delta x\rightarrow 0}\frac{f(x_{0}+\Delta ...

Sun Feb 16 02:58:00 CST 2020 0 972
方向導數導數

1.方向導數定義 設開集\(D \subset \mathbf{R}^{n}, f : D \rightarrow \mathbf{R},\overrightarrow{u}\)是一個方向,如果極限\(\displaystyle\lim _{t \rightarrow 0} \frac{f ...

Fri Sep 27 19:44:00 CST 2019 0 433
方向導數梯度向量與全微分

一個最簡單的例子:f(x,y)=x+y 那么全微分df=dx+dy 因為這個f(x,y)對x和y都是線性的,所以df=dx+dy對大的x和y變化也成立。 將x和y方向分開看,x方向每增加dx=1(y不變),f(x,y)增加df=1;y方向每增加dy=1(x不變),f(x,y)也增加df ...

Thu May 01 17:26:00 CST 2014 0 3743
導數方向導數梯度

導數方向導數,切線、梯度是從高中就開始接觸的概念,然而對這幾個概念的認識不清,困惑了我很長時間,下面我將以圖文並茂的形式,對這幾個概念做詳細的解釋。 1, 導數 定義:設函數y=f(x)在點x0的某個鄰域內有定義,當自變量x在x0處有增量Δx,(x0+Δx)也在該鄰域內時,相應地函數取得增量 ...

Tue May 15 00:32:00 CST 2018 2 2914
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM