回歸模型是機器學習中很重要的一類模型,不同於常見的分類模型,回歸模型的性能評價指標跟分類模型也相差很大,這里簡單基於工作中的一點實踐來記錄一下基於sklearn庫計算回歸模型中常用的四大評價指標主要包括:explained_variance_score ...
回歸模型的評價指標有以下幾種:SSE 誤差平方和 :The sum of squares due to errorR square 決定系數 :Coefficient of determinationAdjusted R square:Degree of freedom adjusted coefficient of determination 一 SSE 誤差平方和 計算公式如下: 同樣的數據集 ...
2019-07-15 10:27 0 868 推薦指數:
回歸模型是機器學習中很重要的一類模型,不同於常見的分類模型,回歸模型的性能評價指標跟分類模型也相差很大,這里簡單基於工作中的一點實踐來記錄一下基於sklearn庫計算回歸模型中常用的四大評價指標主要包括:explained_variance_score ...
回歸模型的性能的評價指標主要有:RMSE(平方根誤差)、MAE(平均絕對誤差)、MSE(平均平方誤差)、R2_score。但是當量綱不同時,RMSE、MAE、MSE難以衡量模型效果好壞。這就需要用到R2_score,實際使用時,會遇到許多問題,今天我們深度研究一下。 預備知識 搞清楚 ...
參考鏈接:https://www.iteye.com/blog/lps-683-2387643 問題: AUC是什么 AUC能拿來干什么 AUC如何求解(深入理解AUC) AUC是什么 混淆矩陣(Confusion matrix) 混淆矩陣是理解大多數評價指標的基礎 ...
一、模型評價的意義 在完成模型構建之后,必須對模型的效果進行評估,根據評估結果來繼續調整模型的參數、特征或者算法,以達到滿意的結果。 評價一個模型最簡單也是最常用的指標就是准確率,但是在沒有任何前提下使用准確率作為評價指標,准確率往往不能反映一個模型性能的好壞,例如在不平衡的數據集上,正類樣本 ...
目錄 分類模型評價指標說明 混淆矩陣 例子 混淆矩陣定義 混淆矩陣代碼 正確率 真陽率和假陽率 真陽率 假陽率 真陽率和假陽率的公式 ...
因為光看模型在訓練集上的表現容易導致過擬合,因此回歸模型通常有兩種評價方式,一種是看驗證/交叉驗證的結果,另一種是對訓練集上的表現結果進行修正,常見指標有:AIC,BIC,Cp,adjusted R2。 用驗證/交叉驗證方式評價回歸模型性能的指標(Performance ...
AUC是一種衡量機器學習模型分類性能的重要且非常常用的指標,其只能用於二分類的情況. AUC的本質含義反映的是對於任意一對正負例樣本,模型將正樣本預測為正例的可能性 大於 將負例預測為正例的可能性的 概率( :-) 沒辦法這句話就是這么繞, rap~). AUC作為數值,那么到底是 ...
小書匠 深度學習 分類方法常用的評估模型好壞的方法. 0.預設問題 假設我現在有一個二分類任務,是分析100封郵件是否是垃圾郵件,其中不是垃圾郵件有65封,是垃圾郵件有35封.模型最終給郵件的結論 ...