高斯消元法,是線性代數中的一個算法,可用來求解線性方程組,並可以求出矩陣的秩,以及求出可逆方陣的逆矩陣。 在講算法前先介紹些概念 矩陣的初等變換 矩陣的初等變換又分為矩陣的初等行變換和矩陣的初等列變換。矩陣的初等行變換和初等列變換統稱為初等變換。另外:分塊矩陣也可以定 ...
眾所周知,高斯消元可以用來求 n 元一次方程組的,主要思想就是把一個 n n 的矩陣的對角線消成 ,除了第 n 列 用來存放 b 的 的其他全部元素消成 ,是不是聽起來有點不可思議 NO NO NO 這不就是初中學的代入消元和加減消元嘛,思路一樣的。 Step : 將所給出的 n 元一次方程組的每個未知數系數和等號后面的常數寫成一個 n n 的矩陣 比如這個三元一次方程組我們就可以寫成如下 的矩陣 ...
2019-04-09 20:44 2 1975 推薦指數:
高斯消元法,是線性代數中的一個算法,可用來求解線性方程組,並可以求出矩陣的秩,以及求出可逆方陣的逆矩陣。 在講算法前先介紹些概念 矩陣的初等變換 矩陣的初等變換又分為矩陣的初等行變換和矩陣的初等列變換。矩陣的初等行變換和初等列變換統稱為初等變換。另外:分塊矩陣也可以定 ...
高斯消元其實在算法競賽中算是一個十分常見的算法。它的大致思想就和初中階段學到的加減消元法差不多。這個算法的時間復雜度為\(O(n^3)\),是一個相當簡單的算法,但是具體實現需要一些思考。 這里給出模板題的鏈接: 洛谷P3389 P4035 1.1 問題引入 給定方程組 ...
高斯消元法: 常用來解線性方程組,例如: 首先,我們需要提出各個系數,因為消元只和系數有關系。 -> 這樣轉成矩陣的模樣存下來。 每次消元需要選擇一個方程作為消元方程,然后用這個方程消去其他方程(非消元方程)中的某個元。 我們從前往后消,從上往下選擇方程 ...
消元法 先來看一下百度百科的定義: 消元法是指將許多關系式中的若干個元素通過有限次地變換,消去其中的某些元素,從而使問題獲得解決的一種解題方法。 可能不好懂。 回想一下小學數學中解二元一次方程的方法 比如下面這個二元一次方程: \[\begin{cases} x + y ...
自學了一陣高斯消元啦,感覺這個東西聽着高深,其實還是很Logical(有邏輯的)。下面我就分享一下自己對高斯消元的認識啦,希望也可以幫初學者了解這個算法。 首先我們要清楚:高斯消元的目的在於求線性方程組的解。 所以呢,我們先從一個小小的解方程組的例子開始: 偉大的數學天才 ...
解線性方程組 高斯消元 我們想想人類是如何解線性方程組的,一個例子 \[\begin{cases} x+y+z=1\cdots(1)\\ x+2y+3z=2\cdots(2)\\ x+2y+2z=3\cdots(3) \end{cases} \] 運用小學數學知識 ...
高斯消元法,是線性代數中的一個算法,可用來求解線性方程組,並可以求出矩陣的秩,以及求出可逆方陣的逆矩陣。高斯消元法的原理是:若用初等行變換將增廣矩陣 化為 ,則AX = B與CX = D是同解方程組。 所以我們可以用初等行變換把增廣矩陣轉換為行階梯陣,然后回代求出方程的解 ...
高斯消元Gauss 引入 高斯消元法(Gauss-Jordan elimination)是求解線性方程組的經典算法,它在當代數學中有着重要的地位和價值,是線性代數課程教學的重要組成部分。 高斯消元法除了用於線性方程組求解外,還可以用於行列式計算、求矩陣的逆,以及其他計算機和工程 ...