線性代數 線性空間 指向量空間,在線性空間里,定義了向量加法與標量乘法 其中標量乘法對向量加法有分配律 我們稱標量乘與向量加為線性組合 線性無關 如果一組向量中不存在一個子集使得其能線性組合出該組向量中的另一向量 線性基 也稱線性空間的基底,即最小的一組能線性表示出整個線性空間 ...
個人筆記, 網上摘抄 垂直 平行 角 弧 圓 恆等於 相似相同 三角形 正比 邏輯和 邏輯或 積分 不等於 小於等於 大於等於 約等於 無窮 : : 對於集合操作中U, , 操作需要滿足並相容性 並操作 舉例 差運算 舉例 笛卡兒積 笛卡兒積是將關系R中的每個元組與關系S中的每個元組進行拼接組成一個新的關系 下面是RxS的結果,R和S使用上圖中的R,S 選擇操作 選擇操作就是從關系中選出符合條件的 ...
2018-11-29 09:26 1 1380 推薦指數:
線性代數 線性空間 指向量空間,在線性空間里,定義了向量加法與標量乘法 其中標量乘法對向量加法有分配律 我們稱標量乘與向量加為線性組合 線性無關 如果一組向量中不存在一個子集使得其能線性組合出該組向量中的另一向量 線性基 也稱線性空間的基底,即最小的一組能線性表示出整個線性空間 ...
A的列空間:column space 設Ax=b,以column picture視角看,每一個x,都是A的列的一種線性組合,每種組合均構成一個b。取遍x 得到的所有的b 構成了A的column sp ...
前言 因為博主太菜了所以需要寫筆記來加深理解。 感謝隊爺 cly 對我的耐心指導。 Part 1 向量 \(\to\) Part 2 矩陣乘法 矩陣其實可以看成若干向量。 矩陣相 ...
線性代數學習感悟 目錄 1 學習路線 1.1 實際學習路線 1.2 優化路線 2 《理解矩陣》讀后感 2.1 句子摘抄 2.2 書籍推薦 1.學習路線 1.1實際學習路線 《線性代數》同濟五版 + 《張宇帶你學》精選書后習題 —>> 線性代數先修課(清華大學 ...
一:線性方程組 *線性方程組的基本問題: 1.如何判別線性方程組是否有解? 2.當線性方程組有解時,如何判定其解是否唯一? 3.如何求出有解線性方程組的解? ...
線性代數是個有趣的東西。 過於基礎的定義(例如矩陣運算等)不會提及。 I.基於行變換的線性代數 I.I.高斯消元、行變換與線性方程組 高斯消元是一切線代科技的基礎。 高斯消元,是指通過以下三種變換: 倍加變換,即將一行的一定倍數加到另一行上 對換變換,即交換兩行 倍乘變化 ...
Orz yanQval 內容主要來自半年前洛谷的冬令營,因為版權原因課件就不放了。 本來是不想學來着,但是過幾天出去學習要講這個,怕被虐的太慘就先預習一下吧 然而課件里面的題目基本都是CTSC難度的而且找不到提交地址qwq。 矩陣 \(A_{nm}\)表示一個\(n\)行\(m\)列 ...
(轉自)https://www.cnblogs.com/lsqin/p/9342923.html 關系代數是一種抽象的查詢語言,它用對關系的運算來表達查詢。 任何一種運算都是將一定的運算符作用於一定的運算對象上,得到預期的結果。所以運算對象、運算符、運算結果是運算的三大要素。 按運算符 ...