原文:【科技】快速莫比烏斯變換(反演) 與 子集卷積

我們比較了解的是有關多項式的乘法運算,對於下標為整數,下標運算為相加等於某個數的時候,我們有很優秀的FFT做法。 但是遇到一些奇怪的卷積形式時,比如我們定義 h f g , h S sum limits L subseteq S sum limits R subseteq S L cup R S f L g R 。 此時下標是一個集合,運算為集合並的卷積,我們已知了 f 和 g ,需要快速算出 h ...

2018-04-13 10:07 1 2978 推薦指數:

查看詳情

快速莫比變換(FMT)

快速莫比變換(FMT) 原文出處:虞大的博客。此僅作蒟蒻本人復習用~ 給定兩個長度為n的序列 \(a_0, a_1, \cdots, a_{n-1}\)和\(b_0, b_1, \cdots, b_{n-1}\),你需要求出一個序列\(c_0, c_1, \cdots, c_{n-1 ...

Tue Jul 10 04:42:00 CST 2018 0 1637
狄利克雷卷積&莫比反演總結

狄利克雷卷積&莫比反演總結 Prepare 1、\([P]\)表示當\(P\)為真時\([P]\)為\(1\),否則為\(0\)。 2、\(a|b\)指\(b\)被\(a\)整除。 3、一些奇怪常見的函數: \(1(n)=1\) \(id(n)=n\) \(\sigma ...

Wed Dec 26 23:41:00 CST 2018 5 1607
狄利克雷卷積&莫比反演證明

狄利克雷卷積簡介 卷積這名字聽起來挺學究的,今天學了之后發現其實挺朴實hhh。 卷積: “(n)”表示到n的一個范圍。 設\(f,g\)是兩個數論函數(也就是說,以自然數集為定義域的復數值函數),則卷積運算\(f\ast g\)定義為 \[(f\ast g)(n) = \sum_ ...

Wed Oct 17 01:25:00 CST 2018 1 892
狄利克雷卷積&莫比反演

狄利克雷卷積 定義:如果函數 \(F,f,g\) 滿足: \(F(n)=\sum\limits_{d|n}f(d)g(\frac{n}{d})\) 則 \(F\) 是 \(f\) 和 \(g\) 的狄利克雷卷積,記作 \(F=(f∗g)\),或 \(F(n)=(f∗g)(n ...

Wed Aug 18 04:16:00 CST 2021 2 97
莫比反演

莫比反演 初學莫比反演 先膜一發高神:orz Gay神 莫比反演 有兩種形式。。。 第一種: 如果我們有函數\(f(x)\),以及\(g(x)\),並且有: \[g(x)=\sum_{d|x}f(d) \] 那么,我們就有: \[f(x)=\sum_{d ...

Sat Dec 02 19:44:00 CST 2017 5 750
淺談莫比反演

莫比反演 前言 很早之前就想講一講莫比反演,但由於事務較為繁忙,一直耽誤至今。一方面,莫比反演是數論中非常重要的一個變換,另一方面,我的博客名也受此啟發而得(雖然莫比反演和莫比環沒有半毛錢關系)。 廢話不多說,下面我們進入正題。 莫比函數 要想學習莫比反演 ...

Thu Sep 09 01:08:00 CST 2021 0 141
「筆記」莫比反演

目錄 前置知識 小碎骨 引理1 數論分塊 積性函數 定義 性質 常見積性函數 莫比函數 定義 性質 反演常用結論 線性篩求莫比函數 ...

Wed Apr 08 01:41:00 CST 2020 9 437
莫比反演入門

      轉載自----- http://blog.csdn.net/qw4990/article/details/14055183 這個文章主要講一下ACM中1個常用的莫比反演公式,看到很多博客上面公式是有,但是都沒證明,《組合數學》上的證明又沒看懂, 就自己想了種證明方法,覺得 ...

Wed Sep 16 09:24:00 CST 2015 10 18749
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM