版權聲明:本文為博主原創文章,遵循 CC 4.0 BY-SA 版權協議,轉載請附上原文出處鏈接和本聲明。 原作者:WangBo_NLPR 原文:https://blog.csdn.net/wa ...
fromhttps: www.zhihu.com question 下面從梯度與方向導數的關系來解釋: 方向導數 引入 原來我們學到的偏導數指的是多元函數沿坐標軸的變化率,但是我們往往很多時候要考慮多元函數沿任意方向的變化率,那么就引出了方向導數 定義 方向導數是個數值。 二維空間情形: 我們把f x Dx,y Dy f x,y 的值Value 與PP 的距離value 的比值的極值叫做沿PP 的 ...
2018-03-22 18:27 0 1272 推薦指數:
版權聲明:本文為博主原創文章,遵循 CC 4.0 BY-SA 版權協議,轉載請附上原文出處鏈接和本聲明。 原作者:WangBo_NLPR 原文:https://blog.csdn.net/wa ...
原作者:WangBo_NLPR 原文:https://blog.csdn.net/walilk/article/details/50978864 原作者:Eric_LH 原文:https://blog ...
導數 設有一元函數 \(\normalsize y=f(x)\) 則函數在點 \(\normalsize x_{0}\) 處的導數為 \(\normalsize f^{'}(x_{0})=\lim_{\Delta x\rightarrow 0}\frac{f(x_{0}+\Delta ...
導數,方向導數,切線、梯度是從高中就開始接觸的概念,然而對這幾個概念的認識不清,困惑了我很長時間,下面我將以圖文並茂的形式,對這幾個概念做詳細的解釋。 1, 導數 定義:設函數y=f(x)在點x0的某個鄰域內有定義,當自變量x在x0處有增量Δx,(x0+Δx)也在該鄰域內時,相應地函數取得增量 ...
高數學的時候就沒弄明白,考試之前說這個太難不考(蜜汁自信),結果出了兩道大題,現回顧總結一下 給出方向導數的定義 定理 如果函數在點是可微分的,那么函數在該點沿任一方向的方向導數都存在,且有 其中為X軸到 方向的轉角. 記住,方向導數 實為一個 數值 ...
方向導數,偏導數,梯度 一、總結 一句話總結: 方向導數:曲面的每一個點是有很多條切線的,不同方向的切線就是方向導數。 偏導數:例如f(x0,y0)對x求偏導就是與X軸方向平行時的方向導數。 梯度:梯度的方向是最大的方向導數,是f(x,y)這一點增長最快的方向。 二、方向導數 ...
0、總結 參考:https://blog.csdn.net/eric_lh/article/details/78994461 1、定義 參考:https://blog.csdn.net/qq_48736958/article/details/114543957 ① 導數: 反映 ...
本文作者Key,博客園主頁:https://home.cnblogs.com/u/key1994/ 本內容為個人原創作品,轉載請注明出處或聯系:zhengzha16@163.com 0.淵源 第一次接觸方向導數與梯度的概念,是在大學的高等數學課堂上,當時對於這部分內容是似懂非懂 ...