原文:SVM多分類

http: www.matlabsky.com thread .htmlSVM算法最初是為二值分類問題設計的,當處理多類問題時,就需要構造合適的多類分類器。目前,構造SVM多類分類器的方法主要有兩類:一類是直接法,直接在目標函數上進行修改,將多個分類面的參數求解合並到一個最優化問題中,通過求解該最優化問題 一次性 實現多類分類。這種方法看似簡單,但其計算復雜度比較高,實現起來比較困難,只適合用於小 ...

2015-04-22 21:03 0 9690 推薦指數:

查看詳情

SVM多分類

SVMs(Surport Vector Machines)是用來解決兩分類問題的,直接用SVMs實現多分類是不行的,只能使用下面這些間接的方法: (1)1-v-r,即對於每一個分類,訓練一個該分類和其他分類分類器,如對於類k,k是一類,所有其他的是另一類,這樣就需要訓練k個分類器。對未知樣本分類 ...

Tue Feb 20 17:35:00 CST 2018 0 2525
SVM處理多分類問題

“one-against-one” approach “one-vs-the-rest” multi-class strategy ...

Sat Nov 25 00:38:00 CST 2017 0 1086
8.SVM用於多分類

從前面SVM學習中可以看出來,SVM是一種典型的兩類分類器。而現實中要解決的問題,往往是多類的問題。如何由兩類分類器得到多類分類器,就是一個值得研究的問題。 以文本分類為例,現成的方法有很多,其中一勞永逸的方法,就是真的一次性考慮所有樣本,並求解一個多目標函數的優化問題,一次性得到多個分類面 ...

Tue Oct 29 00:25:00 CST 2013 0 5511
opencv SVM多分類 人臉識別

  上一篇介紹了OPENCV中SVM的簡單使用,以及自帶的一個二分類問題。   例子中的標簽是程序手動寫的,輸入也是手動加的二維坐標點。     對於復雜問題就必須使用數據集中的圖片進行訓練,標簽使用TXT文件或程序設置好,下面以 IMM Face Database 中的人臉數據作為示例 ...

Sun Oct 15 00:54:00 CST 2017 0 3575
機器學習之SVM多分類

實驗要求數據說明 :數據集data4train.mat是一個2*150的矩陣,代表了150個樣本,每個樣本具有兩維特征,其類標在truelabel.mat文件中,trainning sample 圖展示了理想的分類類結果;方案選擇:選擇並實現一種兩分類方法(如感知機方法,SVM ...

Sun Jul 14 20:17:00 CST 2019 0 1840
SVM實現多分類的三種方案

SVM本身是一個二值分類器   SVM算法最初是為二值分類問題設計的,當處理多類問題時,就需要構造合適的多類分類器。   目前,構造SVM多類分類器的方法主要有兩類   (1)直接法,直接在目標函數上進行修改,將多個分類面的參數求解合並到一個最優化問題中,通過求解該最優化問題“一次性”實現 ...

Fri Mar 11 23:36:00 CST 2016 0 83816
Multiclass SVM loss:多分類SVM損失函數

1. SVM 損失:在一個樣本中,對於真實分類與其他每各個分類,如果真實分類所得的分數與其他各分類所得的分數差距大於或等於安全距離,則真實標簽分類與該分類沒有損失值;反之則需要計算真實分類與該分類的損失值; 真實分類與其他各分類的損失值的總和即為一個樣本的損失值 ①即真實標簽分類所得分數大於等於 ...

Thu Jan 23 05:13:00 CST 2020 0 1989
sklearn中SVM一對一多分類參數的研究

1、引言 最近在學習sklearn庫中SVM算法中C-SVC多分類的相關應用,但是在sklearn中關於如何提取訓練后的參數,並脫離原有的sklearn庫,甚至脫離原有的python開發環境,在新的平台和系統中使用訓練后的參數完成前向推理,是本文所需要講述的內容。由於筆者主要從事於嵌入式平台 ...

Sat Nov 16 06:43:00 CST 2019 1 1616
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM