Task對於.NET的重要性毋庸置疑。通過最近的一些面試經歷,發現很多人對與Task及其調度機制,以及線程和線程池之間的關系並沒有清晰的認識。本文采用最簡單的方式模擬了Task的實現,旨在說明Task是什么?它是如何被調度執行的?源代碼從這里下載。
一、Task(Job)
二、TaskScheduler(JobScheduler)
三、基於線程池的調度
四、使用指定線程進行調度
五、異步等待
六、await關鍵字的運用
七、狀態機
一、Task(Job)
Task代表一項具有某種狀態的操作,我們使用如下這個Job類型來模擬Task。Job封裝的操作體現為一個Action委托,狀態則通過JobStatus枚舉來表示(對應TaskStatus枚舉)。簡單起見,我們僅僅定義了四種狀態(創建、調度、執行和完成)。Invoke方法負責執行封裝的Action委托,並對狀態進行相應設置。
public class Job { private readonly Action _work; public Job(Action work)=> _work = work; public JobStatus Status { get; internal set; } internal protected virtual void Invoke() { Status = JobStatus.Running; _work(); Status = JobStatus.Completed;
} } public enum JobStatus { Created, Scheduled, Running, Completed }
二、TaskScheduler(JobScheduler)
Task承載的操作通過調度得以執行,具體的調度策略取決於調度器的選擇。Task調度器通過TaskScheduler表示,我們利用如下這個JobScheduler類型對它進行模擬。如下面的代碼片段所示,我們只為抽象類JobScheduler定義了唯一的QueueJob方法來調度作為參數的Job對象。靜態Current屬性表示當前默認實現的調度器。
public abstract class JobScheduler { public abstract void QueueJob(Job job); public static JobScheduler Current { get; set; } = new ThreadPoolJobScheduler (); }
對於開發者來說,執行Task就是將它提交給調度器,這一操作體現在我們為Job類型定義的靜態Start方法中。該方法通過參數指定具體的調度器,如果沒有顯式指定,默認采用JobScheduler的Current靜態屬性設置的默認調度器。為了方便后面的演示,我們還定義了一個靜態的Run方法,該方法會將指定的Action對象封裝成Job,並調用Start方法利用默認的調度器進行調度。
public class Job { private readonly Action _work; public Job(Action work)=> _work = work; public JobStatus Status { get; internal set; } internal protected virtual void Invoke() { Status = JobStatus.Running; _work(); Status = JobStatus.Completed; } public void Start(JobScheduler? scheduler = null) => (scheduler ?? JobScheduler.Current).QueueJob(this); public static Job Run(Action work) { var job = new Job(work); job.Start(); return job; } }
三、基於線程池的調度
Task如何執行取決於選擇怎樣的調度器,.NET默認采用基於線程池的調度策略,這一策略體現在ThreadPoolTaskScheduler類型上,我們使用如下這個ThreadPoolJobScheduler 進行模擬。如下面的代碼片段所示,重寫的QueueJob方法通過調用ThreadPool.QueueUserWorkItem方法執行指定Job對象封裝的Action委托。JobScheduler的Current屬性設置的默認調度器就是這么一個ThreadPoolJobScheduler 對象。
public class ThreadPoolJobScheduler : JobScheduler { public override void QueueJob(Job job) { job.Status = JobStatus.Scheduled; var executionContext = ExecutionContext.Capture(); ThreadPool.QueueUserWorkItem(_ => ExecutionContext.Run(executionContext!, _ => job.Invoke(), null)); } }
我們按照如下的方式調用Job的靜態Run方法創建並執行了三個Job,每個Job封裝的Action委托在執行的時候會將當前線程ID打印出來。
_ = Job.Run(() => Console.WriteLine($"Job1 is excuted in thread {Thread.CurrentThread.ManagedThreadId}")); _ = Job.Run(() => Console.WriteLine($"Job2 is excuted in thread {Thread.CurrentThread.ManagedThreadId}")); _ = Job.Run(() => Console.WriteLine($"Job3 is excuted in thread {Thread.CurrentThread.ManagedThreadId}")); Console.ReadLine();
由於采用默認的基於線程池的調度策略,所以三個Job會在三個不同的線程上執行。
四、使用指定線程進行調度
我們知道.NET進程只有一個全局的線程池,對於一些需要長時間運行且具有較高優先級的操作,采用基於線程池的調用未必是好的選擇。比如在一個Web應用中,線程池的工作線程會被用來處理請求,對於一個需要持續運行的Job可能會因為可用工作線程的不足而被阻塞。.NET對於這種情況具有不同的處理方式(啟動Task的時候選擇TaskCreationOptions.LongRunning選項),這里我們使用自定義調度器的方式來解決這個問題。如下這個DedicatedThreadJobScheduler 利用創建的“專有線程”來保證被調用的Job能夠“立即”執行。
internal class DedicatedThreadJobScheduler : JobScheduler { private readonly BlockingCollection<Job> _queues = new(); private readonly Thread[] _threads; public DedicatedThreadJobScheduler(int threadCount) { _threads = Enumerable.Range(1, threadCount).Select(i_ => new Thread(Invoke)).ToArray(); Array.ForEach(_threads, it => it.Start()); void Invoke(object? state) { while (true) { _queues.Take().Invoke(); } } } public override void QueueJob(Job job)=>_queues.Add(job); }
還是上面演示的程序,這次我們將當前調度器設置為上面這個DedicatedThreadJobScheduler ,並將使用的線程數設置為2。
JobScheduler.Current = new DedicatedThreadJobScheduler (2); _ = Job.Run(() => Console.WriteLine($"Job1 is excuted in thread {Thread.CurrentThread.ManagedThreadId}")); _ = Job.Run(() => Console.WriteLine($"Job2 is excuted in thread {Thread.CurrentThread.ManagedThreadId}")); _ = Job.Run(() => Console.WriteLine($"Job3 is excuted in thread {Thread.CurrentThread.ManagedThreadId}")); _ = Job.Run(() => Console.WriteLine($"Job4 is excuted in thread {Thread.CurrentThread.ManagedThreadId}")); _ = Job.Run(() => Console.WriteLine($"Job5 is excuted in thread {Thread.CurrentThread.ManagedThreadId}")); _ = Job.Run(() => Console.WriteLine($"Job6 is excuted in thread {Thread.CurrentThread.ManagedThreadId}")); Console.ReadLine();
我們會發現所有的操作只會在兩個固定的線程中被執行。
五、異步等待
如果需要在某個Task執行之后接着執行后續的操作,我們可以調用其ContinueWith方法指定待執行的操作,現在我們將這個方法定義Job類型上。Job與Task的ContinueWith有些差異,在這里我們認為ContinueWith指定的也是一個Job,那么多個Job則可以按照預先編排的順序構成一個鏈表。當前Job執行后,只需要將后續這個Job交付給調度器就可以了。如下面的代碼片段所示,我們利用_continue字段來表示異步等待執行的Job,並利用它維持一個Job鏈表。ContinueWith方法會將指定的Action委托封裝成Job並添加到鏈表末端。
public class Job { private readonly Action _work; private Job? _continue; public Job(Action work) => _work = work; public JobStatus Status { get; internal set; } public void Start(JobScheduler? scheduler = null) => (scheduler ?? JobScheduler.Current).QueueJob(this); internal protected virtual void Invoke() { Status = JobStatus.Running; _work(); Status = JobStatus.Completed; _continue?.Start(); } public static Job Run(Action work) { var job = new Job(work); job.Start(); return job; } public Job ContinueWith(Action<Job> continuation) { if (_continue == null) { var job = new Job(() => continuation(this)); _continue = job; } else { _continue.ContinueWith(continuation); } return this; } }
利用ContinueWith方法實現異步操作的按序執行體現在如下的程序中。
Job.Run(() =>{ Thread.Sleep(1000); Console.WriteLine("Foo1"); }).ContinueWith(_ =>{ Thread.Sleep(100); Console.WriteLine("Bar1"); }).ContinueWith(_ =>{ Thread.Sleep(100); Console.WriteLine("Baz1"); });
Job.Run(() =>{ Thread.Sleep(100); Console.WriteLine("Foo2"); }).ContinueWith(_ =>{ Thread.Sleep(10); Console.WriteLine("Bar2"); }).ContinueWith(_ =>{ Thread.Sleep(10); Console.WriteLine("Baz2"); });
Console.ReadLine();
輸出結果
六、await關鍵字的運用
雖然ContinueWith方法能夠解決“異步等待”的問題,但是我們更喜歡使用await關鍵字,接下來我們就為Job賦予這個能力。為此我們定義了如下這個實現了ICriticalNotifyCompletion接口的JobAwaiter結構體。顧名思義,該接口用來發送操作完成的通知。一個JobAwaiter對象由一個Job對象構建而成,當它自身執行完成之后,OnCompleted方法會被調用,我們利用它執行后續的操作。
public struct JobAwaiter: ICriticalNotifyCompletion { private readonly Job _job; public bool IsCompleted => _job.Status == JobStatus.Completed; public JobAwaiter(Job job) { _job = job; if (job.Status == JobStatus.Created) { job.Start(); } } public void OnCompleted(Action continuation) { _job.ContinueWith(_ => continuation()); } public void GetResult() { } public void UnsafeOnCompleted(Action continuation)=>OnCompleted(continuation); }
我們在Job類型上添加這個GetAwaiter方法返回根據自身創建的JobAwaiter對象。
public class Job { private readonly Action _work; private Job? _continue; public Job(Action work) => _work = work; public JobStatus Status { get; internal set; } public void Start(JobScheduler? scheduler = null) => (scheduler ?? JobScheduler.Current).QueueJob(this); internal protected virtual void Invoke() { Status = JobStatus.Running; _work(); Status = JobStatus.Completed; _continue?.Start(); } public static Job Run(Action work) { var job = new Job(work); job.Start(); return job; } public Job ContinueWith(Action<Job> continuation) { if (_continue == null) { var job = new Job(() => continuation(this)); _continue = job; } else { _continue.ContinueWith(continuation); } return this; } public JobAwaiter GetAwaiter() => new(this); }
任何一個類型一旦擁有了這樣一個GetAwaiter方法,我們就能將await關鍵詞應用在對應的對象上面。
await Foo(); await Bar(); await Baz();
Console.ReadLine(); static Job Foo() => new Job(() => { Thread.Sleep(1000); Console.WriteLine("Foo"); }); static Job Bar() => new Job(() => { Thread.Sleep(100); Console.WriteLine("Bar"); }); static Job Baz() => new Job(() => { Thread.Sleep(10); Console.WriteLine("Baz"); });
輸出結果:
七、狀態機
我想你應該知道await關鍵字僅僅是編譯器提供的語法糖,編譯后的代碼會利用一個“狀態機”實現“異步等待”的功能,上面這段代碼最終編譯成如下的形式。值得一提的是,Debug和Release模式編譯出來的代碼是不同的,下面給出的是Release模式下的編譯結果,上述的狀態機體現為生成的<<Main>$>d__0這個結構體。它的實現其實很簡單:如果個方法出現了N個await關鍵字,它們相當於將整個方法的執行流程切割成N+1段,狀態機的狀態體現為當前應該執行那段,具體的執行體現在MoveNext方法上。GetAwaiter方法返回的ICriticalNotifyCompletion對象用來確定當前操作是否結束,如果結束則可以直接指定后續操作,否則需要調用AwaitUnsafeOnCompleted對后續操作進行處理。
// Program using System; using System.Diagnostics; using System.Runtime.CompilerServices; using System.Runtime.InteropServices; using System.Threading.Tasks; using Jobs; [CompilerGenerated] internal class Program { [StructLayout(LayoutKind.Auto)] [CompilerGenerated] private struct <<Main>$>d__0 : IAsyncStateMachine { public int <>1__state; public AsyncTaskMethodBuilder <>t__builder; private JobAwaiter <>u__1; private void MoveNext() { int num = <>1__state; try { JobAwaiter awaiter; switch (num) { default: awaiter = <<Main>$>g__Foo|0_0().GetAwaiter(); if (!awaiter.IsCompleted) { num = (<>1__state = 0); <>u__1 = awaiter; <>t__builder.AwaitUnsafeOnCompleted(ref awaiter, ref this); return; } goto IL_006c; case 0: awaiter = <>u__1; <>u__1 = default(JobAwaiter); num = (<>1__state = -1); goto IL_006c; case 1: awaiter = <>u__1; <>u__1 = default(JobAwaiter); num = (<>1__state = -1); goto IL_00c6; case 2: { awaiter = <>u__1; <>u__1 = default(JobAwaiter); num = (<>1__state = -1); break; } IL_00c6: awaiter.GetResult(); awaiter = <<Main>$>g__Baz|0_2().GetAwaiter(); if (!awaiter.IsCompleted) { num = (<>1__state = 2); <>u__1 = awaiter; <>t__builder.AwaitUnsafeOnCompleted(ref awaiter, ref this); return; } break; IL_006c: awaiter.GetResult(); awaiter = <<Main>$>g__Bar|0_1().GetAwaiter(); if (!awaiter.IsCompleted) { num = (<>1__state = 1); <>u__1 = awaiter; <>t__builder.AwaitUnsafeOnCompleted(ref awaiter, ref this); return; } goto IL_00c6; } awaiter.GetResult(); Console.ReadLine(); } catch (Exception exception) { <>1__state = -2; <>t__builder.SetException(exception); return; } <>1__state = -2; <>t__builder.SetResult(); } void IAsyncStateMachine.MoveNext() { //ILSpy generated this explicit interface implementation from .override directive in MoveNext this.MoveNext(); } [DebuggerHidden] private void SetStateMachine([System.Runtime.CompilerServices.Nullable(1)] IAsyncStateMachine stateMachine) { <>t__builder.SetStateMachine(stateMachine); } void IAsyncStateMachine.SetStateMachine([System.Runtime.CompilerServices.Nullable(1)] IAsyncStateMachine stateMachine) { //ILSpy generated this explicit interface implementation from .override directive in SetStateMachine this.SetStateMachine(stateMachine); } } [AsyncStateMachine(typeof(<<Main>$>d__0))] private static Task <Main>$(string[] args) { <<Main>$>d__0 stateMachine = default(<<Main>$>d__0); stateMachine.<>t__builder = AsyncTaskMethodBuilder.Create(); stateMachine.<>1__state = -1; stateMachine.<>t__builder.Start(ref stateMachine); return stateMachine.<>t__builder.Task; } [SpecialName] private static void <Main>(string[] args) { <Main>$(args).GetAwaiter().GetResult(); } }
上面提到過,編譯器生成的狀態機代碼在Debug和Release模式是不一樣的。在Release模式下狀態機是一個結構體,雖然是以接口ICriticalNotifyCompletion的方式使用它,但是由於使用了ref關鍵字,所以不會涉及裝箱,所以不會對GC造成任何影響。但是Debug模式下生成的狀態機則是一個類(如下所示),將會涉及針對堆內存的分配和回收。對於遍布await關鍵字的應用程序,兩者之間的性能差異肯定是不同的。實際上針對Task的很多優化策略,比如使用ValueTask,對某些Task<T>對象(比如狀態為Completed的Task<bool>對象)的復用,以及使用IValueTaskSource等,都是為了解決內存分配的問題。
// Program using System; using System.Diagnostics; using System.Runtime.CompilerServices; using System.Threading.Tasks; using Jobs; [CompilerGenerated] internal class Program { [CompilerGenerated] private sealed class <<Main>$>d__0 : IAsyncStateMachine { public int <>1__state; public AsyncTaskMethodBuilder <>t__builder; public string[] args; private JobAwaiter <>u__1; private void MoveNext() { int num = <>1__state; try { JobAwaiter awaiter3; JobAwaiter awaiter2; JobAwaiter awaiter; switch (num) { default: awaiter3 = <<Main>$>g__Foo|0_0().GetAwaiter(); if (!awaiter3.IsCompleted) { num = (<>1__state = 0); <>u__1 = awaiter3; <<Main>$>d__0 stateMachine = this; <>t__builder.AwaitUnsafeOnCompleted(ref awaiter3, ref stateMachine); return; } goto IL_007e; case 0: awaiter3 = <>u__1; <>u__1 = default(JobAwaiter); num = (<>1__state = -1); goto IL_007e; case 1: awaiter2 = <>u__1; <>u__1 = default(JobAwaiter); num = (<>1__state = -1); goto IL_00dd; case 2: { awaiter = <>u__1; <>u__1 = default(JobAwaiter); num = (<>1__state = -1); break; } IL_00dd: awaiter2.GetResult(); awaiter = <<Main>$>g__Baz|0_2().GetAwaiter(); if (!awaiter.IsCompleted) { num = (<>1__state = 2); <>u__1 = awaiter; <<Main>$>d__0 stateMachine = this; <>t__builder.AwaitUnsafeOnCompleted(ref awaiter, ref stateMachine); return; } break; IL_007e: awaiter3.GetResult(); awaiter2 = <<Main>$>g__Bar|0_1().GetAwaiter(); if (!awaiter2.IsCompleted) { num = (<>1__state = 1); <>u__1 = awaiter2; <<Main>$>d__0 stateMachine = this; <>t__builder.AwaitUnsafeOnCompleted(ref awaiter2, ref stateMachine); return; } goto IL_00dd; } awaiter.GetResult(); Console.ReadLine(); } catch (Exception exception) { <>1__state = -2; <>t__builder.SetException(exception); return; } <>1__state = -2; <>t__builder.SetResult(); } void IAsyncStateMachine.MoveNext() { //ILSpy generated this explicit interface implementation from .override directive in MoveNext this.MoveNext(); } [DebuggerHidden] private void SetStateMachine([System.Runtime.CompilerServices.Nullable(1)] IAsyncStateMachine stateMachine) { } void IAsyncStateMachine.SetStateMachine([System.Runtime.CompilerServices.Nullable(1)] IAsyncStateMachine stateMachine) { //ILSpy generated this explicit interface implementation from .override directive in SetStateMachine this.SetStateMachine(stateMachine); } } [AsyncStateMachine(typeof(<<Main>$>d__0))] [DebuggerStepThrough] private static Task <Main>$(string[] args) { <<Main>$>d__0 stateMachine = new <<Main>$>d__0(); stateMachine.<>t__builder = AsyncTaskMethodBuilder.Create(); stateMachine.args = args; stateMachine.<>1__state = -1; stateMachine.<>t__builder.Start(ref stateMachine); return stateMachine.<>t__builder.Task; } [SpecialName] [DebuggerStepThrough] private static void <Main>(string[] args) { <Main>$(args).GetAwaiter().GetResult(); } }