高一函數專題 抽象函數


\({\color{Red}{歡迎到學科網下載資料學習 }}\)
[ 【高分突破系列】高一數學上學期同步知識點剖析精品講義與分層練習]
(https://www.zxxk.com/docpack/2783085.html)
\({\color{Red}{ 跟貴哥學數學,so \quad easy!}}\)

必修第一冊同步拔高練習,難度3顆星!

模塊導圖

知識剖析

概念

我們把沒有給出具體解析式的函數稱為抽象函數,題目中往往只給出函數的特殊條件或特征.
 

常見抽象函數模型

 

經典例題

【題型一】求值問題

【典題1】已知函數\(f(x)\)是定義在\((0 ,+∞)\)上的函數,且對任意\(x ,y∈(0 ,+∞)\),都有\(f(xy)=f(x)+f(y)\)\(f(2)=1\),求\(f(4) ,f(8)\).
【解析】\(∵\)對任意\(x,y∈(0 ,+∞)\),都有\(f(xy)=f(x)+f(y)\)\(f(2)=1\)
\(∴f(4)=f(2×2)=f(2)+f(2)=2\)\(f(8)=f(2×4)=f(2)+f(4)=3\)
【點撥】
① 對於抽象函數求值問題,可大膽取特殊值求解;
② 抽象函數\(f(xy)=f(x)+f(y)\)是對數函數\(f(x)=log_a⁡x\)型,由\(f(2)=1\)可知\(f(x)=log_2⁡x\),則易得\(f(4)=2\)\(f(8)=3\),作選填題可取.又如\(f(x+y)=f(x)f(y)\)\(f(1)=2\),求\(f(3)\);由\(f(x+y)=f(x)f(y)\)可令\(f(x)=a^{x}\),又因\(f(1)=2\),得\(f(x)=2^{x}\),故易得\(f(3)=8\).
故要對常見抽象函數對應的函數模型比較熟悉.
 

【典題2】對任意實數\(x ,y\),均滿足\(f(x+y^2 )=f(x)+2[f(y)]^2\)\(f(1)≠0\),則\(f(2001)=\)_________.
【解析】\(x=y=0\),得\(f(0)=0\)
\(x=n\) ,\(y=1\),得\(f(n+1)=f(n)+2[f(1)]^2\)
\(n=1\),得\(f(1)=f(0)+2 f[(1)]^{2}=2 f[(1)]^{2}\)
\(\therefore f(1)=\dfrac{1}{2}\)
\(\therefore f(n+1)-f(n)=\dfrac{1}{2}\)
\(\therefore f(n)=\dfrac{n}{2}\),即\(f(2001)=\dfrac{2001}{2}\).
【點撥】
① 常常需要賦予一些特殊值(如取\(x=0\)等)或特殊關系(如取\(y=x\)\(y=-x\)等),要觀察等式方程的特點尋找目標,也要大膽下筆多些嘗試找些規律;
② 比如本題中所求的\(f(2001)\)中自變量的取值\(2001\)較大,往往要從周期性或者函數的解析式的方向入手.
 

【題型二】單調性問題

【典題1】設函數\(y=f(x)\)是定義在\(R^+\)上的函數,並且滿足下面三個條件
①對任意正數\(x ,y\),都有\(f(xy)=f(x)+f(y)\);②當\(x>1\)時,\(f(x)<0\);③\(f(3)=-1\)
(1)求\(f(1)\) ,\(f\left(\dfrac{1}{9}\right)\)的值;
(2)證明\(f(x)\)\(R^+\)是減函數;
(3)如果不等式\(f(x)+f(2-x)<2\)成立,求\(x\)的取值范圍.
【解析】(1)令\(x=y=1\)\(∴f(1)=f(1)+f(1)\)
\(∴f(1)=0\)
\(x=y=3\)\(∴f(9)=f(3)+f(3)=-1-1=-2\)
\(f(9)+f\left(\dfrac{1}{9}\right)=f(1)=0\) ,得\(f\left(\dfrac{1}{9}\right)=2\)
(2) \({\color{Red}{(利用函數單調性的定義證明) }}\)
\(x_2>x_1>0\),則\(\dfrac{x_{2}}{x_{1}}>1\)
\(∴\)由②得\(f\left(\dfrac{x_{2}}{x_{1}}\right)<0\)
\(∵f(xy)=f(x)+f(y)\)
\(\therefore f\left(x_{2}\right)-f\left(x_{1}\right)=f\left(\dfrac{x_{2}}{x_{1}}\right)<0\)
\(∴f(x)\)\(R^+\)上為減函數.
(3)由條件①得\(f[x(2-x)]<2\) , \({\color{Red}{ (湊項f(m)=2,再利用單調性求解) }}\)
\(f\left(\dfrac{1}{9}\right)=2\)\(f[x(2-x)]<f\left(\dfrac{1}{9}\right)\)
\(∵f(x)\)\(R^+\)上為減函數,\(\therefore x(2-x)>\dfrac{1}{9}\)
\(∵x>0\)\(2-x>0\)\({\color{Red}{(注意函數定義域) }}\)
解得\(x\)的范圍是\(\left(1-\dfrac{2 \sqrt{2}}{3}, 1+\dfrac{2 \sqrt{2}}{3}\right)\)
【點撥】
① 抽象函數的單調性常用單調性定義證明
(1) 任取\(x_1\) ,\(x_2∈D\),且\(x_1<x_2\)
(2) 作差\(f(x_1)-f(x_2)\)(根據題目給出的抽象函數特征來“"構造”" 出\(f(x_1)-f(x_2)\))
此步有時也會用作商法:判斷\(\dfrac{f\left(x_{1}\right)}{f\left(x_{2}\right)}\)\(1\)的大小;
(3) 變形;
(4) 定號(即判斷差\(f(x_1 )-f(x_2)\)的正負);
(5) 下結論(指出函數f(x)在給定的區間\(D\)上的單調性).
② 在解不等式時,往往需要利用函數的單調性求解.
③ 抽象函數\(f(xy)=f(x)+f(y)\)符合對數函數\(f(x)=log_a⁡x\)型,由\(f(3)=-1\)可知\(f(x)=\log _{\frac{1}{3}} x\),作選填題可用.
 

【題型三】奇偶性問題

【典題1】定義在\(R\)上的增函數\(y=f(x)\)對任意\(x ,y∈R\)都有\(f(x+y)=f(x)+f(y)\),則
(1)求\(f(0)\)
(2)證明:\(f(x)\)為奇函數;
(3)若\(f\left(k \cdot 3^{x}\right)+f\left(3^{x}-9^{x}-2\right)<0\)對任意\(x∈R\)恆成立,求實數\(k\)的取值范圍.
【解析】(1)在\(f(x+y)=f(x)+f(y)\)中,
\(x=y=0\)可得,\(f(0)=f(0)+f(0)\),則\(f(0)=0\)
(2) \({\color{Red}{(定義法證明函數奇偶性) }}\)
\(y=-x\),得\(f(0)=f(x)+f(-x)\)
\(f(0)=0\),則有\(0=f(x)+f(-x)\)
即可證得\(f(x)\)為奇函數;
(3)因為\(f(x)\)\(R\)上是增函數,又由(2)知\(f(x)\)是奇函數,
\(f\left(k \cdot 3^{x}\right)<-f\left(3^{x}-9^{x}-2\right)=f\left(-3^{x}+9^{x}+2\right)\)
即有\(k \cdot 3^{x}<-3^{x}+9^{x}+2\),得\(k<3^{x}+\dfrac{2}{3^{x}}-1\) \({\color{Red}{(分離參數法) }}\)
又有\(3^{x}+\dfrac{2}{3^{x}}-1 \geq 2 \sqrt{2}-1\)(當\(x=\log _{3} \sqrt{2}\)時取到等號),
\(3^{x}+\dfrac{2}{3^{x}}-1\)有最小值\(2 \sqrt{2}-1\)
所以要使\(f\left(k \cdot 3^{x}\right)+f\left(3^{x}-9^{x}-2\right)<0\)恆成立,只要使\(k<2 \sqrt{2}-1\)即可,
\(k\)的取值范圍是\((-\infty, 2 \sqrt{2}-1)\)
【點撥】
② 判斷或證明抽象函數的奇偶性,從奇偶性的定義入手,判斷\(f(-x)\)\(f(x)\)的關系.
② 抽象函數\(f(x+y)=f(x)+f(y)\)是正比例函數\(f(x)=kx(x≠0\))型,由\(f(x)\)是增函數,可知\(k>0\),選填題可用.
 

【題型四】周期性問題

【典題1】奇函數\(f (x)\)定義在\(R\)上,且對常數\(T>0\),恆有\(f (x + T ) = f (x\)),則在區間\([0 ,2T]\)上,方程\(f (x) = 0\)根的個數最小值為 \(\underline{\quad \quad}\) .
【解析】\(∵\)函數\(f(x)\)是定義在\(R\)上的奇函數,
\(f(0)=0\)
\(∵f(x+T)=f(x)\),即周期為\(T\)
\(∴f(2T)=f(T)=f(0)=0\)
又由\(f\left(-\dfrac{T}{2}\right)=f\left(-\dfrac{T}{2}+T\right)=f\left(\dfrac{T}{2}\right)\),且\(f\left(-\dfrac{T}{2}\right)=-f\left(\dfrac{T}{2}\right)\)
\(\therefore f\left(\dfrac{T}{2}\right)=0\)\(\therefore f\left(\dfrac{3 T}{2}\right)=f\left(\dfrac{T}{2}\right)=0\)
故在區間\([0 ,2T]\),方程\(f(x)=0\)根有\(x=0, \dfrac{T}{2}, T, \dfrac{3 T}{2}, 2 T\)
個數最小值是\(5\)個,
【點撥】抽象函數的周期性常與奇偶性,對稱性放在一起,記住有關周期性和對稱性的結論,做題時常畫圖像更容易找到思路.
 

鞏固練習

1 (★★)\(f(x)\)的定義域為\((0 ,+∞)\),對任意正實數\(x ,y\)都有\(f(xy)=f(x)+f(y)\)\(f(4)=2\),則\(f(\sqrt{2})=\)\(\underline{\quad \quad}\) .
 

2 (★★★)已知\(f(x)\)是定義在\(R\)上的偶函數,對任意\(x∈R\)都有\((f(x+2)-1)^{2}=2 f(x)-f^{2}(x)\),則\(f(2019)=\)\(\underline{\quad \quad}\)
 

3 (★★)\(f(x)\)是定義在\(R\)上的以\(3\)為周期的奇函數,且\(f(2)=0\),則方程\(f(x)=0\)在區間\([-6 ,6]\)內解的個數的最小值是\(\underline{\quad \quad}\) .
 

4 (★★★)已知定義在\((-∞ ,0)∪(0 ,+∞)\)上的函數\(f(x)\)滿足
①對任意\(x ,y∈(-∞ ,0)∪(0 ,+∞)\),都有\(f(xy)=f(x)+f(y)\)
②當\(x>1\)時,\(f(x)>0\)\(f(2)=1\)
(1)試判斷函數\(f(x)\)的奇偶性;
(2)判斷函數\(f(x)\)在區間\([-4 ,0)∪(0 ,-4]\)上的最大值;
(3)求不等式\(f(3x-2)+f(x)≥4\)的解集.
 
 

5 (★★★)已知定義在\((0 ,+∞)\)的函數\(f(x)\),對任意的\(x、y∈(0 ,+∞)\),都有\(f(xy)=f(x)+f(y)\),且當\(0<x<1\)時,\(f(x)>0\)
(1)證明:當\(x>1\)時,\(f(x)<0\)
(2)判斷函數\(f(x)\)的單調性並加以證明;
(3)如果對任意的\(x、y∈(0 ,+∞)\)\(f\left(x^{2}+y^{2}\right) \leq f(a)+f(x y)\)恆成立,求實數\(a\)的取值范圍.
 
 

6 (★★★)定義在\(R\)上的單調增函數\(f(x)\)滿足:對任意\(x ,y∈R\)都有\(f(x+y)=f(x)+f(y)\)成立
(1)求\(f(0)\)的值;
(2)求證:\(f(x)\)為奇函數;
(3)若\(f\left(1+2^{x}\right)+f\left(t \cdot 3^{x}\right)>0\)\(x∈(-∞ ,1]\)恆成立,求\(t\)的取值范圍.
 
 

挑戰學霸
已知\(f(x)\)是定義在\(R\)上不恆為\(0\)的函數,滿足對任意\(x ,y∈R\)\(f(x+y)=f(x)+f(y)\)\(f(xy)=f(x)f(y)\)
(1)求\(f(x)\)的零點;
(2)判斷\(f(x)\)的奇偶性和單調性,並說明理由;
(3)①當\(x∈Z\)時,求f(x)的解析式;②當\(x∈R\)時,求\(f(x)\)的解析式.
 
 
 
 

參考答案

  1. 【答案】\(\dfrac{1}{2}\)
    【解析】\(x=y=2\),得\(f(4)=f(2)+f(2)⇔ f(2)=1\)
    \(x=y=\sqrt{2}\),得\(f(2)=f(\sqrt{2})+f(\sqrt{2}) \Leftrightarrow f(\sqrt{2})=\dfrac{1}{2}\)
  2. 【答案】\(1 \pm \dfrac{\sqrt{2}}{2}\)
    【解析】根據題意,\(f(x)\)為偶函數且\(f(x)\)滿足\((f(x+2)-1)^{2}=2 f(x)-f^{2}(x)\)
    變形可得\([f(x+2)-1]^{2}+\left[f^{2}(x)-2 f(x)+1\right]=1\)
    \([f(x+2)-1]^{2}+[f(x)-1]^{2}=1\)
    \(x=-1\)可得\([f(-1)-1]^{2}+[f(1)-1]^{2}=1\),即\(2[f(1)-1]^2=1\)
    解可得:\(f(1)=f(-1)=1 \pm \dfrac{\sqrt{2}}{2}\)
    又由\(f(x)\)滿足\([f(x+2)-1]^{2}+[f(x)-1]^{2}=1\)
    則有\([f(x+4)-1]^{2}+[f(x+2)-1]^{2}=1\)
    聯立可得:\([f(x+4)-1]^{2}=[f(x)-1]^{2}\)
    變形可得:\(f(x+4)=f(x)\)\(f(x+4)+f(x)=2\)
    \(f(x+4)=f(x)\),則有\(f(2019)=f(-1+505 \times 4)=f(-1)=1 \pm \dfrac{\sqrt{2}}{2}\)
    此時有\(f(2019)=1 \pm \dfrac{\sqrt{2}}{2}\)
    \(f(x+4)+f(x)=2\),即\(f(x+4)=2-f(x)\)
    則有\(f(x+8)=2-f(x+4)=f(x)\),則有\(f(2019)=f(3+2016)=f(3)\)
    \(f(3)=2-f(-1)=1 \pm \dfrac{\sqrt{2}}{2}\)
    綜合可得:\(f(2019)=1 \pm \dfrac{\sqrt{2}}{2}\)
  3. 【答案】\(13\)
    【解析】\(∵f(x)\)是定義在\(R\)上的以\(3\)為周期的奇函數,
    \(∴f(x+3)=f(x)\),且\(f(-x)=-f(x)\)
    \(f(0)=0\),則\(f(3)=f(6)=f(-6)=f(0)=0\)\(f(-3)=-f(3)=0\)
    \(∵f(2)=0\)\(∴f(5)=f(-1)=f(-4)=0\)\(f(-5)=0\)
    \(f(1)=0\)\(f(4)=0\)\(f(-2)=0\)
    方程的解可能為\(0,3,6,-6,-3,2,5,\)\(-5,-2,-1,1,4,-4\)\(13\)個,
    故選:\(D\)
  4. 【答案】\((1)\)偶函數 \((2)2\) \((3)x≤-2\)\(x \geq \dfrac{8}{3}\)
    【解析】\((1)∵f(xy)=f(x)+f(y)\)
    \(x=y=a\),則\(f(a^2)=f(a)+f(a)=2f(a)\)
    \(x=y=-a\),則\(f(a^2)=f(-a)+f(-a)=2f(-a)\)
    \(f(a)=f(-a)\)
    故函數\(f(x)\)是偶函數,
    (2)任取\(0<x_1<x_2\),則\(x_2-x_1>0\)
    \(∵f(xy)=f(x)+f(y)\)
    \(∴f(xy)-f(x)=f(y)\)
    \(\therefore f\left(x_{2}\right)-f\left(x_{1}\right)=f\left(\dfrac{x_{2}}{x_{1}}\right)\)
    \(\because \dfrac{x_{2}}{x_{1}}>1\)\(x>1\)時,\(f(x)>0\)
    \(\therefore f\left(x_{2}\right)-f\left(x_{1}\right)=f\left(\dfrac{x_{2}}{x_{1}}\right)>0\)
    得到\(f(x_1)<f(x_2)\)
    \(∴f(x)\)\((0,+∞)\)上的增函數.
    故函數\(f(x)\)在區間\((0,-4]\)上的最大值為\(f(4)=f(2)+f(2)=2\)
    又由函數\(f(x)\)是偶函數,
    \(∴\)函數\(f(x)\)在區間\([-4,0)\)上的最大值也為\(2\)
    故函數\(f(x)\)在區間\([-4,0)∪(0,-4]\)上的最大值為\(2\)
    (3)由(2)得\(f(4)=2\),則\(f(16)=f(6)+f(6)=4\)
    故不等式\(f(3x-2)+f(x)≥4\)可化為:\(f[(3x-2)x]≥f(16)\)
    由(2)中結論可得:\(|(3x-2)x|≥16\)
    \((3x-2)x≥16\)\((3x-2)x≤-16\)
    解得\(x≤-2\)\(x \geq \dfrac{8}{3}\)
  5. 【答案】\((1)\)\((2)\)減函數,函數單調性定義證明 \((3) (0 ,2]\)
    【解析】\((1)∵f(xy)=f(x)+f(y)\)
    \(x=y=1\),則\(f(1)=f(1)+f(1)\),所以\(f(1)=0\)
    再令\(y=\dfrac{1}{x}\),則\(f(1)=f(x)+f\left(\dfrac{1}{x}\right)=0\)
    \(x>1\)時,\(0<\dfrac{1}{x}<1\)
    \(\because f\left(\dfrac{1}{x}\right)>0\)\(\therefore f(x)=-f\left(\dfrac{1}{x}\right)<0\)
    (2)任取\(x_1\)\(x_2∈(0,+∞)\),且\(x_1<x_2\),則\(f\left(x_{2}\right)-f\left(x_{1}\right)=f\left(\dfrac{x_{2}}{x_{1}}\right)\)
    \(∵x_1<x_2\),所以\(\dfrac{x_{2}}{x_{1}}>1\),則\(f\left(\dfrac{x_{2}}{x_{1}}\right)<0\)\(f(x_2)<f(x_1)\)
    \(∴f(x)\)\((0,+∞)\)上是減函數,
    (3)\(f\left(x^{2}+y^{2}\right) \leq f(a)+f(x y)\)恆成立,
    \(\therefore f\left(x^{2}+y^{2}\right) \leq f(a x y)\)恆成立,
    \(∵f(x)\)\((0,+∞)\)上是減函數,
    \(\therefore x^{2}+y^{2} \geq a x y\)
    \(\therefore 0<a \leq \dfrac{x^{2}+y^{2}}{x y}=\dfrac{y}{x}+\dfrac{x}{y} \geq 2\),當且僅當\(x=y\)取等號,
    \(∴\)實數\(a\)的取值范圍\((0,2]\)
  6. 【答案】\((1) 0\) \((2)\)略,定義證明 \((3) t>-1\)
    【解析】(1)令\(x=y=0\),則\(f(0)=f(0)+f(0)\)\(∴f(0)=0\)
    (2)令\(y=-x\),則\(f(0)=f(x)+f(-x)\)
    \(∵f(0)=0\)\(∴f(-x)=-f(x)\)
    \(∴f(x)\)為奇函數.
    (3)\(\because f\left(t \cdot 3^{x}\right)>-f\left(1+2^{x}\right)\)\(\therefore f\left(t \cdot 3^{x}\right)>f\left(-1-2^{x}\right)\)\(\therefore t \cdot 3^{x}>-1-2^{x}\)
    \(\therefore t>-\left(\dfrac{1}{3}\right)^{x}-\left(\dfrac{2}{3}\right)^{x}\)恆成立,
    \(-\left(\dfrac{1}{3}\right)^{x}-\left(\dfrac{2}{3}\right)^{x}\)單調遞增,\(\therefore-\left(\dfrac{1}{3}\right)^{x}-\left(\dfrac{2}{3}\right)^{x} \leq-1\)
    從而\(t>-1\)
     

【挑戰學霸】
【解析】(1)記\(f(x+y)=f(x)+f(y)\) ①,\(f(xy)=f(x)f(y)\)
在①中取\(y=0\)\(f(0)=0\).若存在\(x≠0\),使得\(f(x)=0\),則對任意\(y∈R\)
\(f(y)=f\left(x \cdot \dfrac{y}{x}\right)=f(x) f\left(\dfrac{y}{x}\right)=0\),與\(f(x)\)不恆為\(0\)矛盾.
所以\(x≠0\)時,\(f(x)≠0\)
所以函數的零點是\(0\).
(2)在①中取\(y=-x\)\(f(x)+f(-x)=f(0)=0\),即\(f(-x)=-f(x)\)
所以\(f(x)\)是奇函數.
\(x ,y∈R\)\(y>x\)時,\(f(y)-f(x)=f(y)+f(-x)=f(y-x)=(f(\sqrt{y-x}))^{2}>0\)
可得\(f(y)>f(x)\)
所以函數\(f(x)\)\(R\)上遞增.
(3)①由\(f(xy)=f(x)f(y)\)中取\(x ,y=1\)\(f(1)=f^2 (1)\)
因為\(f(1)≠0\),所以\(f(1)=1\)
對任意正整數\(n\),由①得\(f(n)=\underbrace{f(1)+\cdots+f(1)}_{n 個}=n \times 1=n\)
\(f(-n)=-f(n)=-n\)
又因為\(f(0)=0\),所以\(x∈N\)時,\(f(x)=x\)
對任意有理數\(\dfrac{m}{n}\left(m \in \boldsymbol{N}^{*}, \quad n \in \boldsymbol{N}^{*}\right)\),由①,
\(f(m)=f\left(n \cdot \dfrac{m}{n}\right)=\underbrace{f\left(\dfrac{m}{n}\right)+\cdots+f\left(\dfrac{m}{n}\right)=n f\left(\dfrac{m}{n}\right)}_{n \text { 個 }}\)
所以\(f\left(\dfrac{m}{n}\right)=\dfrac{f(m)}{n}=\dfrac{m}{n}\),即對一切\(x∈Z\) ,\(f(x)=x\)
②若存在\(x∈R\),使得\(f(x)≠x\)
不妨設\(f(x)>x\)(否則以\(-f(-x)\)代替\(f(x)\)\(-x\)代替\(x\)即可),
則存在有理數\(\alpha\),使得\(x<\alpha<f(x)\)
(例如可取\(n=\left[\dfrac{1}{f(x)-x}\right]+1\)\(m=[nx]+1\)\(\alpha=\dfrac{m}{n}\)).
\(x<\alpha\)\(f(x)>\alpha=f(\alpha)\),與\(f(x)\)的遞增性矛盾.
所以\(x∈R\)時,\(f(x)=x\)


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM