之前我們已經介紹了0/1背包問題,現在我們以洛谷P1616為例,介紹一下完全背包問題
完全背包問題就是將0/1背包問題中的每樣物品只能拿一次這個限制條件去掉,每樣物品可以無限次裝入。
對於完全背包的圖形解釋,我截取《LeetCode_101》內的解釋展現出來:
簡要說一下推導過程:因為我們可以多次拿取物品,在總容積不超過j的情況下,我們也最多只能裝j/v[i]=k個物品,那么狀態轉移方程就寫為
dp[i][j]=max(dp[i-1][j],dp[i-1][j-v[i]]+w[i],dp[i-1][j-2*v[i]]+2w[i],...dp[i-1][j-k*v[i]])。
利用0/1背包思想,我們可以得到
dp[i][j-v]=max( dp[i-1][j-v] , dp[i-1][j-2v]+w[i],dp[i-1][j-3v]+2w[i], dp[i-1][j-4v]+3w[i],..., dp[i-1][j-kv]+(k-1)w[i])。兩邊同時加上w[i]后可以替換上式中的max(dp[i-1][j-v[i]]+w[i],dp[i-1][j-2*v[i]]+2w[i],...dp[i-1][j-k*v[i]]).
所以我們就得到了狀態轉移方程——dp[i][j]=max(dp[i-1][j],dp[i][j-v[i]]+w[i])
同樣的,我們可以對上述dp數組進行狀態壓縮,將第一個維度去掉。思路與0/1背包問題基本一致。
壓縮后的狀態轉移方程:
dp[j]=max(dp[j],dp[j-w[i]]+w[i])
代碼可寫為:
for(int i=0;i<N;i++)
for(int j=w[i];j<W;j++)
dp[j]=max(dp[j],dp[j-w[i]]+v[i]);
注意此時我們這里與0/1背包問題不同,此時我們是正向遍歷數組。因為我們需要利用到j-w[i]列的信息。注意此時右邊的dp[j]是第i-1行的值。
因此,介紹完完全背包問題后,洛谷的這道編程題就十分容易了:
#include<iostream>
#include<vector>
#include<math.h>
using namespace std;
int main() {
int t, m;
cin >> t >> m;
vector<long long> dp(t + 1, 0); //數據較大,有可能爆int,所以開long long。
long long* times = new long long[m];
long long* values = new long long[m];
int tim, val;
for (int i = 0; i < m; i++) {
cin >> tim >> val;
times[i] = tim;
values[i] = val;
}
for (int i = 1; i <= m; i++) {
for (int j = times[i-1]; j <= t; j++)
dp[j] = max(dp[j], dp[j - times[i-1]] + values[i-1]);
}
cout << dp[t];
delete[]times;
delete[]values;
return 0;
}