深度圖神經網絡(GNN)論文


part1/經典款論文

1. KDD 2016,Node2vec 經典必讀第一篇,平衡同質性和結構性

《node2vec: Scalable Feature Learning for Networks》

 

2. WWW2015,LINE 1階+2階相似度

《Line: Large-scale information network embedding》

 

3. KDD 2016,SDNE 多層自編碼器

《Structural deep network embedding》

 

4. KDD 2017,metapath2vec  異構圖網絡

《metapath2vec: Scalable representation learning for heterogeneous networks》

 

5. NIPS 2013,TransE  知識圖譜奠基

《Translating Embeddings for Modeling Multi-relational Data》

 

6. ICLR 2018,GAT  attention機制

《Graph Attention Network》

 

7. NIPS 2017,GraphSAGE  歸納式學習框架

《Inductive Representation Learning on Large Graphs 》

 

8. ICLR 2017,GCN 圖神經開山之作

《SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS》

 

9. ICLR 2016,GGNN 門控圖神經網絡

《Gated Graph Sequence Neural Networks》

 

10. ICML 2017,MPNN  空域卷積消息傳遞框架

《Neural Message Passing for Quantum Chemistry》

 

part2/熱門款論文 

2020年之前

 

11.[arXiv 2019]Revisiting Graph Neural Networks: All We Have is Low-Pass Filters

重溫圖神經網絡:我們只有低通濾波器

 

[論文]

https://arxiv.org/abs/1905.09550

 

12.[NeurIPS 2019]Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks

打破天花板:更強的多尺度深度圖卷積網絡

 

[論文] 

https://arxiv.org/abs/1906.02174

 

13.[ICLR 2019] Predict then Propagate: Graph Neural Networks meet Personalized PageRank

先預測后傳播:圖神經網絡滿足個性化 PageRank

 

[論文] 

https://arxiv.org/abs/1810.05997

 

[代碼] 

https://github.com/klicperajo/ppnp

 

14.[ICCV 2019]DeepGCNs: Can GCNs Go as Deep as CNNs?

DeepGCN:GCN能像CNN一樣深入嗎?

 

[論文] 

https://arxiv.org/abs/1904.03751

 

[代碼(Pytorch)]

https://github.com/lightaime/deep_gcns_torch

 

[代碼(TensorFlow)]

https://github.com/lightaime/deep_gcns

 

15.[ICML 2018]

Representation Learning on Graphs with Jumping Knowledge Networks

基於跳躍知識網絡的圖表征學習

 

[論文] 

https://arxiv.org/abs/1806.03536

 

16.[AAAI 2018]Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning

深入了解用於半監督學習的圖卷積網絡

 

[論文] 

https://arxiv.org/abs/1801.07606


2020年

 

17.[arXiv 2020]Deep Graph Neural Networks with Shallow Subgraph Samplers

具有淺子圖采樣器的深圖神經網絡

 

[論文] 

https://arxiv.org/abs/2012.01380

 

18.[arXiv 2020]Revisiting Graph Convolutional Network on Semi-Supervised Node Classification from an Optimization Perspective

從優化的角度重新審視半監督節點分類的圖卷積網絡

 

[論文] 

https://arxiv.org/abs/2009.11469

 

19.[arXiv 2020]

Tackling Over-Smoothing for General Graph Convolutional Networks

解決通用圖卷積網絡的過度平滑

 

[論文] 

https://arxiv.org/abs/2008.09864

 

20.[arXiv 2020]DeeperGCN: All You Need to Train Deeper GCNs

DeeperGCN:訓練更深的 GCN 所需的一切

 

[論文] 

https://arxiv.org/abs/2006.07739

 

[代碼]

https://github.com/lightaime/deep_gcns_torch

 

21.[arXiv 2020]Effective Training Strategies for Deep Graph Neural Networks

深度圖神經網絡的有效訓練策略

 

[論文] 

https://arxiv.org/abs/2006.07107

 

[代碼] 

https://github.com/miafei/NodeNorm

 

22.[arXiv 2020]Revisiting Over-smoothing in Deep GCNs

重新審視深度GCN中的過度平滑 

 

[論文] 

https://arxiv.org/abs/2003.13663

 

23.[NeurIPS 2020]Graph Random Neural Networks for Semi-Supervised Learning on Graphs

用於圖上半監督學習的圖隨機神經網絡

 

[論文] 

https://proceedings.neurips.cc/paper/2020/hash/fb4c835feb0a65cc39739320d7a51c02-Abstract.html

 

[代碼] 

https://github.com/THUDM/GRAND

 

24.[NeurIPS 2020]Scattering GCN: Overcoming Oversmoothness in Graph Convolutional Networks

散射GCN:克服圖卷積網絡中的過度平滑

 

[論文] 

https://proceedings.neurips.cc/paper/2020/hash/a6b964c0bb675116a15ef1325b01ff45-Abstract.html

 

[代碼] 

https://github.com/dms-net/scatteringGCN

 

25.[NeurIPS 2020]Optimization and Generalization Analysis of Transduction through Gradient Boosting and Application to Multi-scale Graph Neural Networks

Transduction through Gradient Boosting 的優化和泛化分析及其在多尺度圖神經網絡中的應用

 

[論文] 

https://proceedings.neurips.cc/paper/2020/hash/dab49080d80c724aad5ebf158d63df41-Abstract.html

 

[代碼] 

https://github.com/delta2323/GB-GNN

 

26.[NeurIPS 2020]Towards Deeper Graph Neural Networks with Differentiable Group Normalization

邁向具有可微組歸一化的更深圖神經網絡

 

[論文] 

https://arxiv.org/abs/2006.06972

 

27.[ICML 2020 Workshop GRL+]A Note on Over-Smoothing for Graph Neural Networks

關於圖神經網絡過度平滑的說明

 

[論文] 

https://arxiv.org/abs/2006.13318

 

28.[ICML 2020]Bayesian Graph Neural Networks with Adaptive Connection Sampling

具有自適應連接采樣的貝葉斯圖神經網絡

 

[論文] 

https://arxiv.org/abs/2006.04064

 

29.[ICML 2020]Continuous Graph Neural Networks連續圖神經網絡

 

[論文] 

https://arxiv.org/abs/1912.00967

 

30.[ICML 2020]Simple and Deep Graph Convolutional Networks簡單和深度圖卷積網絡

 

[論文] 

https://arxiv.org/abs/2007.02133

 

[代碼] 

https://github.com/chennnM/GCNII

 

31.[KDD 2020] Towards Deeper Graph Neural Networks走向更深的圖神經網絡

 

[論文] 

https://arxiv.org/abs/2007.09296

 

[代碼] 

https://github.com/mengliu1998/DeeperGNN

 

32.[ICLR 2020]Graph Neural Networks Exponentially Lose Expressive Power for Node Classification

圖神經網絡對節點分類的表達能力呈指數級 下降

 

[論文] 

https://arxiv.org/abs/1905.10947

 

[代碼] 

https://github.com/delta2323/gnn-asymptotics

 

33.[ICLR 2020] DropEdge: Towards Deep Graph Convolutional Networks on Node Classification

DropEdge:邁向節點分類的深度圖卷積網絡

 

[Paper] 

https://openreview.net/forum?id=Hkx1qkrKPr

 

[Code] 

https://github.com/DropEdge/DropEdge

 

34.[ICLR 2020] PairNorm: Tackling Oversmoothing in GNNs

PairNorm:解決GNN中的過度平滑問題

 

[論文]

https://openreview.net/forum?id=rkecl1rtwB

 

[代碼]

https://github.com/LingxiaoShawn/PairNorm

 

35.[ICLR 2020]Measuring and Improving the Use of Graph Information in Graph Neural Networks

測量和改進圖神經網絡中圖信息的使用

 

[論文] 

https://openreview.net/forum?id=rkeIIkHKvS

 

[代碼] 

https://github.com/yifan-h/CS-GNN

 

36.[AAAI 2020]Measuring and Relieving the Over-smoothing Problem for Graph Neural Networks from the Topological View

從拓撲角度測量和緩解圖神經網絡的過度平滑問題

 

[論文] 

https://arxiv.org/abs/1909.03211

 

同學們是不是發現有些論文有代碼,有些論文沒有代碼?學姐建議學概念讀沒代碼的,然后再讀有代碼的,原因的話上周的文章有寫,花幾分鍾看一下【學姐帶你玩AI】公眾號的——《圖像識別深度學習研究方向沒有導師帶該怎么學習》

 

part3/最新款論文


37.[arXiv 2021]Two Sides of the Same Coin: Heterophily and Oversmoothing in Graph Convolutional Neural Networks

 

同一枚硬幣的兩面:圖卷積神經網絡中的異質性和過度平滑

 

[論文] 

https://arxiv.org/abs/2102.06462v2

 

38.[arXiv 2021]Graph Neural Networks Inspired by Classical Iterative Algorithms

受經典迭代算法啟發的圖神經網絡

 

[論文] 

https://arxiv.org/abs/2103.06064

 

39.[ICML 2021]Training Graph Neural Networks with 1000 Layers

訓練 1000 層圖神經網絡

 

[論文] 

https://arxiv.org/abs/2106.07476

 

[代碼]

https://github.com/lightaime/deep_gcns_torch

 

40.[ICML 2021] Directional Graph Networks 方向圖網絡

 

[論文] 

https://arxiv.org/abs/2010.02863

 

[代碼] 

https://github.com/Saro00/DGN

 

41.[ICLR 2021]On the Bottleneck of Graph Neural Networks and its Practical Implications

關於圖神經網絡的瓶頸及其實際意義

 

[論文] 

https://openreview.net/forum?id=i80OPhOCVH2

 

[代碼] https://github.com/tech-srl/bottleneck/

 

42.[ICLR 2021] Adaptive Universal Generalized PageRank Graph Neural Network

 

[論文] 

https://openreview.net/forum?id=n6jl7fLxrP

 

[代碼]

https://github.com/jianhao2016/GPRGNN

 

43.[ICLR 2021]Simple Spectral Graph Convolution

簡單的譜圖卷積

 

[論文]

https://openreview.net/forum?id=CYO5T-YjWZV 

 

地址:https://github.com/mengliu1998/awesome-deep-gnn


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM