算法基礎三:分治算法---快速排序算法
一、算法描述與分析
快速排序是一個典型的分治算法:和歸並排序一樣將A[p...r]划分成兩部分,A[p...q]和A[q+1...r],但不是對分(q=[(p+r)/2]),而是利用算法基礎二:漸增型算法---序列的划分中的PARTITION過程,使得A[p...q]中的元素值小於A[q+1...r]中的元素值。遞歸地解決A[p...q]和A[q+1...r]后就可省略合並的過程了。
1、算法的偽代碼描述
QUICKSORT(A,p,r)
if p < r
then q <- PARTITION(A,p,r)
QUICKSORT(A,p,q-1)
QUICKSORT(A,q+1,r)
人們設法控制算法的行為——每次划分隨機地在A[p...r]中選取一個元素作為划分基准,以此來獲得平均情形。
RANDOMIZED-PARTITION(A,p,r)
i <- RANDOM(p,r)
exchange A[r] <-> A[i]
return PARTITION(A,p,r)
排序過程中調用RANDOMIZED-PARTITION
RANDOMIZED-QUICKSORT(A,p,r)
if p < r
then q <- RANDOMIZED-PARTITION(A,p,r)
RANDOMIZED-QUICKSORT(A,p,q-1)
RANDOMIZED-QUICKSORT(A,q+1,r)
2、基本思想
①選定Pivot中心軸
②將大於Pivot中心軸的數字放在Pivot右邊
③將小於Pivot中心軸的數字放在Pivot左邊
④分別對左右子序列重復前三步操作
3、回顧基礎---序列的划分
算法基礎二:漸增型算法---序列的划分 - DarkerG - 博客園 (cnblogs.com)
二、代碼實現
1、LinearList
import java.util.Collections;
import java.util.Comparator;
import java.util.List;
public class LinearList {
public static int randmizedPartition(List<Comparable> a,
int p, int r, Comparator comp){
int i = p + (int) ((double) (r-p)*Math.random());
Collections.swap(a,i,r);//a[r] <-> a[i]
return partition(a,p,r,comp);
}
public static int partition(List<Comparable> a, int p, int r, Comparator comp){
Comparable x;
int i,j;
x = a.get(r);
i = p-1;
for (j=p;j<r;j++){
if (comp.compare(a.get(j),x)<=0){//a[i]<=x
i++;
Collections.swap(a,i,j);
}
}
Collections.swap(a,i+1,r);
return i+1;
}
}
2、Sort
import java.util.Comparator;
import java.util.List;
public class Sort {
static public void quickSort(List<Comparable> a,
int p, int r, Comparator comp){
if (p<r){//結束的條件
int q = LinearList.randmizedPartition(a,p,r,comp);
quickSort(a,p,q,comp);//左邊的
quickSort(a,q+1,r,comp);//右邊的
}
}
}
3、Greater && Less
import java.util.Comparator;
public class Greater implements Comparator<Comparable> {
public int compare(Comparable x, Comparable y){
return x.compareTo(y);
}
}
import java.util.Comparator;
public class Less implements Comparator<Comparable> {
@Override
public int compare(Comparable o1, Comparable o2) {
return o2.compareTo(o1);
}
}
4、測試
import java.util.*;
public class Test {
public static void main(String[] args) {
Integer a[] = {5,1,9,4,6,2,0,3,8,7},i;
String b[] = {"ChongQing","ShangHai","AoMen","TianJin","BeiJing","XiangGang"};
Double c[] = {8.5,6.3,1.7,9.2,0.5,2.3,4.1,7.4,5.9,3.7};
ArrayList<Integer> A = new ArrayList<>();
Vector<String> B = new Vector<>();
LinkedList<Double> C = new LinkedList<>();
for (Integer integer : a) {
A.add(integer);
}
for (String s : b) {
B.add(s);
}
for (Double aDouble : c) {
C.add(aDouble);
}
Sort.quickSort((List) A,0,9,new Less());
Sort.quickSort((List) B,0,5,new Less());
Sort.quickSort((List) C,0,9,new Greater());
System.out.println(A);
System.out.println(B);
System.out.println(C);
}
}
三、應用---找到第i小的數
1、問題描述與分析
分析
2、偽代碼描述
3、程序實現
①Select
import javax.sound.sampled.Line;
import java.util.Comparator;
import java.util.List;
public class Select {
public static Comparable setlectNum(List<Comparable> a, int p , int r, int i, Comparator comp){
if (p==r)
return a.get(p);
int q = LinearList.randmizedPartition(a,p,r,comp);
int k = q - p +1;
if (i == k)
return a.get(q);
else if (i < k)
return setlectNum(a,p,q-1,i,comp);
else
return setlectNum(a,q+1,r,i-k,comp);
}
}
②Test2
import java.util.ArrayList;
import java.util.Arrays;
public class Test2 {
public static void main(String[] args) {
Integer a[] = {5,1,9,4,6,2,0,3,8,7},i;
ArrayList<Integer> A = new ArrayList<>();
for (Integer integer : a) {
A.add(integer);
}
Comparable x = Select.setlectNum(Arrays.asList(a), 0, 9, 0, new Greater());
System.out.println(x);
}
}