https://zhuanlan.zhihu.com/p/110171621
一、什么是時序點過程
現實世界中有這么個問題:有這么一系列歷史事件,每個事件都有其對應的發生時間,也有其所屬的事件類型,基於這一系列歷史事件,預測下一個要發生的是什么類型的事件,以及其發生的時間。
比如下一次地震發生在何時,何地是事件類型,比如一種股票的下一次買賣將發生在何時,買入或賣出是事件類型,比如用戶將在何時去下一個目的地,目的地是哪里是事件類型。
點過程可以對這一系列歷史事件建模,來解決這個預測問題。
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNib2xkc3ltYm9sJTdCcyU3RCUzRCU1Q2xlZnQlNUMlN0IlNUNsZWZ0JTI4dF8lN0JpJTdEJTJDK2RfJTdCaSU3RCU1Q3JpZ2h0JTI5JTVDcmlnaHQlNUMlN0RfJTdCaSUzRDElN0QlNUUlN0JsJTdEJTJDK2RfJTdCaSU3RCslNUNpbislNUNtYXRoY2FsJTdCRCU3RCUzRCU1QyU3QjElMkMrJTVDbGRvdHMlMkMrRCU1QyU3RA==.png)
時序點過程的核心是強度函數
。
是截止
時刻之前事件類型
發生的總次數。
代表在時間窗口
內,事件類型
發生的概率。
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsYW1iZGFfZCUyOHQlMjlkdCslM0QrJTVDZnJhYyU3QiU1Q21hdGhiYiU3QkUlN0QlNUNsZWZ0JTVCJTVDbWF0aHJtJTdCZCU3RCtOXyU3QmQlN0QlMjh0JTI5KyU3QyslNUNtYXRoY2FsJTdCSCU3RF8lN0J0XyU3QiU1Q3RleHQrJTdCbGFzdCslN0QlN0QlN0QlNUNyaWdodCU1RGR0JTdEJTdCJTVDbWF0aHJtJTdCZCU3RCt0JTdEJTNEJTVDZnJhYyU3QnAlNUNsZWZ0JTI4dCUyQytkKyU3QyslNUNtYXRoY2FsJTdCSCU3RF8lN0J0XyU3QiU1Q3RleHQrJTdCbGFzdCslN0QlN0QlN0QlNUNyaWdodCUyOWR0JTdEJTdCMS1GJTVDbGVmdCUyOHQrJTdDKyU1Q21hdGhjYWwlN0JIJTdEXyU3QnRfJTdCJTVDdGV4dCslN0JsYXN0KyU3RCU3RCU3RCU1Q3JpZ2h0JTI5JTdE.png)
其中
代表基於歷史行為,事件類型
在
時刻發生的條件概率密度函數;
代表基於歷史行為,至少有一個事件類型在
發生的條件概率。強度函數
為:
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmFsaWduZWQlN0QrJTVDbGFtYmRhJTI4dCUyOSslMjYlM0QlNUNzdW1fJTdCZCUzRDElN0QlNUUlN0JEJTdEKyU1Q2xhbWJkYV8lN0JkJTdEJTI4dCUyOSslNUMlNUMrJTI2JTNEJTVDc3VtXyU3QmQlM0QxJTdEJTVFJTdCRCU3RCslNUNmcmFjJTdCcCU1Q2xlZnQlMjh0JTJDK2QrJTdDKyU1Q21hdGhjYWwlN0JIJTdEXyU3QnRfJTdCJTVDdGV4dCslN0JsYXN0KyU3RCU3RCU3RCU1Q3JpZ2h0JTI5JTdEJTdCMS1GJTVDbGVmdCUyOHQrJTdDKyU1Q21hdGhjYWwlN0JIJTdEXyU3QnRfJTdCJTVDdGV4dCslN0JsYXN0KyU3RCU3RCU3RCU1Q3JpZ2h0JTI5JTdEJTNEJTVDZnJhYyU3QnAlNUNsZWZ0JTI4dCslN0MrJTVDbWF0aGNhbCU3QkglN0RfJTdCdF8lN0IlNUN0ZXh0KyU3Qmxhc3QrJTdEJTdEJTdEJTVDcmlnaHQlMjklN0QlN0IxLUYlNUNsZWZ0JTI4dCslN0MrJTVDbWF0aGNhbCU3QkglN0RfJTdCJTVDdGV4dCslN0JsYXN0JTdEJTdEJTVDcmlnaHQlMjklN0QrJTVDJTVDKyUyNiUzRCU1Q2ZyYWMlN0IlNUNmcmFjJTdCJTVDbWF0aHJtJTdCZCU3RCtGJTVDbGVmdCUyOHQrJTdDKyU1Q21hdGhjYWwlN0JIJTdEXyU3QiU1Q3RleHQrJTdCbGFzdCslN0QlN0QlNUNyaWdodCUyOSU3RCU3QiU1Q21hdGhybSU3QmQlN0QrdCU3RCU3RCU3QjEtRiU1Q2xlZnQlMjh0KyU3QyslNUNtYXRoY2FsJTdCSCU3RF8lN0IlNUNsZWZ0LnRfJTdCJTVDdGV4dCslN0JsYXN0KyU3RCU3RCU1Q3JpZ2h0JTI5JTdEJTVDcmlnaHQuJTdEJTNELSU1Q2ZyYWMlN0IlNUNtYXRocm0lN0JkJTdEJTdEJTdCJTVDbWF0aHJtJTdCZCU3RCt0JTdEKyU1Q2xvZyslNUNsZWZ0JTI4MS1GJTVDbGVmdCUyOHQrJTdDKyU1Q21hdGhjYWwlN0JIJTdEXyU3QiU1Q3RleHQrJTdCbGFzdCslN0QlN0QlNUNyaWdodCUyOSU1Q3JpZ2h0JTI5KyU1Q2VuZCU3QmFsaWduZWQlN0Q=.png)
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmFsaWduZWQlN0QrRiU1Q2xlZnQlMjh0KyU3QyslNUNtYXRoY2FsJTdCSCU3RF8lN0J0XyU3QiU1Q3RleHQrJTdCbGFzdCU3RCU3RCU3RCU1Q3JpZ2h0JTI5KyUyNiUzRDEtJTVDZXhwKyU1Q2xlZnQlMjgtJTVDaW50XyU3QnRfJTdCJTVDdGV4dCslN0Jsc3N0JTdEJTdEJTdEJTVFJTdCdCU3RCslNUNsYW1iZGElMjhzJTI5KyU1Q21hdGhybSU3QmQlN0QrcyU1Q3JpZ2h0JTI5KyU1QyU1QytwJTVDbGVmdCUyOHQrJTdDKyU1Q21hdGhjYWwlN0JIJTdEXyU3QnRfJTdCJTVDdGV4dCslN0JsYXN0JTdEJTdEJTdEJTVDcmlnaHQlMjkrJTI2JTNEJTVDbGFtYmRhJTI4dCUyOSslNUNleHArJTVDbGVmdCUyOC0lNUNpbnRfJTdCdF8lN0IlNUN0ZXh0KyU3Qmxhc3QlN0QlN0QlN0QlNUUlN0J0JTdEKyU1Q2xhbWJkYSUyOHMlMjkrJTVDbWF0aHJtJTdCZCU3RCtzJTVDcmlnaHQlMjkrJTVDJTVDK3AlNUNsZWZ0JTI4dCUyQytkKyU3QyslNUNtYXRoY2FsJTdCSCU3RF8lN0J0XyU3QiU1Q3RleHQrJTdCbHNzdCU3RCU3RCU3RCU1Q3JpZ2h0JTI5KyUyNiUzRCU1Q2xhbWJkYV8lN0JkJTdEJTI4dCUyOSslNUNleHArJTVDbGVmdCUyOC0lNUNpbnRfJTdCdF8lN0IlNUN0ZXh0KyU3Qmxhc3QlN0QlN0QlN0QlNUUlN0J0JTdEKyU1Q2xhbWJkYSUyOHMlMjkrJTVDbWF0aHJtJTdCZCU3RCtzJTVDcmlnaHQlMjkrJTVDJTVDK3AlNUNsZWZ0JTI4ZCslN0MrdCUyQyslNUNtYXRoY2FsJTdCSCU3RF8lN0J0XyU3QiU1Q3RleHQrJTdCbGFzdCU3RCU3RCU3RCU1Q3JpZ2h0JTI5KyUyNiUzRCU1Q2ZyYWMlN0IlNUNsYW1iZGFfJTdCZCU3RCUyOHQlMjklN0QlN0IlNUNsYW1iZGElMjh0JTI5JTdEKyU1Q2VuZCU3QmFsaWduZWQlN0Q=.png)
因此,只要能根據歷史事件模擬出強度函數
,則可以根據
預測下一個事件。對
的模擬將點過程分為傳統點過程和深度點過程。
二、傳統點過程
1.homogeneous poisson process假設
獨立於歷史事件,且隨着
的變化恆定,即
。inhomogeneous poisson process假設
獨立於歷史事件,且隨着
的變化而變化,即 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsYW1iZGElMjh0JTI5KyUzRCtnJTI4dCUyOSU1Q2dlcTA=.png)
2.hawkes process 認為歷史事件有激勵作用:
,
,
, ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZXRhJTVDZ2VxMA==.png)
3. self-correcting process 認為強度函數的趨勢是一直在增大,但是當一個事件發生后,會先減小。
,
, ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNhbHBoYSUzRTA=.png)
三、深度點過程
傳統點過程缺點:
(1)傳統點過程對強度函數有着上述設定,很有可能不符合實際情況,比如歷史事件對強度函數的影響並不一定是累加的;
(2)如果有多種事件類型的話,還需作出各個事件類型是互相獨立的假設,並且對每個事件類型求強度函數;
(3)傳統點過程對數據的缺失處理不是很好,有時我們只能觀測到一部分事件。
深度點過程就無需這么麻煩,用神經網絡這樣的非線性函數模擬強度函數,這樣一個黑盒子無需設定任何先驗知識。
1. Recurrent Markd Temporal Point Processes:Embedding Event History to Vector(kdd2016)

輸入層:事件類型和發生時間為輸入。事件類型用詞向量,時間用時間的特征(比如是否周末,是否深夜等)
事件類型生成:普通的softmax
強度函數為:
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsYW1iZGElMjh0JTI5JTNEJTVDZXhwKyUyOCU1Q3VuZGVyYnJhY2UlN0IlNUNib2xkc3ltYm9sJTdCdiU3RCU1RSU3QnQlNUUlN0IlNUN0b3AlN0QlN0QrJTVDY2RvdCslNUNib2xkc3ltYm9sJTdCaCU3RF8lN0JqJTdEJTdEXyU3QiU1Q3RleHQrJTdCcGFzdCtpbmZsdWVuY2UrJTdEJTdEJTJCJTVDdW5kZXJicmFjZSU3QnclNUUlN0J0JTdEJTVDbGVmdCUyOHQtdF8lN0JqJTdEJTVDcmlnaHQlMjklN0RfJTdCJTVDdGV4dCslN0JjdXJyZW50K2luZmx1ZW5jZSslN0QlN0QlMkIlNUN1bmRlcmJyYWNlJTdCYiU1RSU3QnQlN0QlN0RfJTdCJTVDdGV4dCslN0JiYXNlK2ludGVuc2l0eSslN0QlN0QlMjk=.png)
時間生成:用下面這種求平均值的算法比較復雜,沒有數值解,有一種簡單的解法,我還沒弄明白是啥...
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmFycmF5JTdEJTdCbCU3RGYlMjh0JTI5JTNEJTVDbGFtYmRhJTI4dCUyOSslNUNleHArJTVDbGVmdCUyOC0lNUNpbnRfJTdCdF8lN0JqJTdEJTdEJTVFJTdCdCU3RCslNUNsYW1iZGElMjglNUN0YXUlMjkrZCslNUN0YXUlNUNyaWdodCUyOSslNUMlNUMrJTNEJTVDZXhwKyU1Q2xlZnQlNUMlN0IlNUNib2xkc3ltYm9sJTdCdiU3RCU1RSU3QnQlNUUlN0IlNUN0b3AlN0QlN0QrJTVDY2RvdCslNUNib2xkc3ltYm9sJTdCaCU3RF8lN0JqJTdEJTJCdyU1RSU3QnQlN0QlNUNsZWZ0JTI4dC10XyU3QmolN0QlNUNyaWdodCUyOSUyQmIlNUUlN0J0JTdEJTJCJTVDZnJhYyU3QjElN0QlN0J3JTdEKyU1Q2V4cCslNUNsZWZ0JTI4JTVDYm9sZHN5bWJvbCU3QnYlN0QlNUUlN0J0JTVFJTdCJTVDdG9wJTdEJTdEKyU1Q2Nkb3QrJTVDYm9sZHN5bWJvbCU3QmglN0RfJTdCaiU3RCUyQmIlNUUlN0J0JTdEJTVDcmlnaHQlMjklNUNyaWdodC4rJTVDJTVDKyU1Q2xlZnQuLSU1Q2ZyYWMlN0IxJTdEJTdCdyU3RCslNUNleHArJTVDbGVmdCUyOCU1Q2JvbGRzeW1ib2wlN0J2JTdEJTVFJTdCdCU1RSU3QiU1Q3RvcCU3RCU3RCslNUNjZG90KyU1Q2JvbGRzeW1ib2wlN0JoJTdEXyU3QmolN0QlMkJ3JTVFJTdCdCU3RCU1Q2xlZnQlMjh0LXRfJTdCaiU3RCU1Q3JpZ2h0JTI5JTJCYiU1RSU3QnQlN0QlNUNyaWdodCUyOSU1Q3JpZ2h0JTVDJTdEJTVDZW5kJTdCYXJyYXklN0Q=.png)
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNoYXQlN0J0JTdEXyU3QmolMkIxJTdEJTNEJTVDaW50XyU3QnRfJTdCaiU3RCU3RCU1RSU3QiU1Q2luZnR5JTdEK3QrJTVDY2RvdCtmJTI4dCUyOStkK3Q=.png)
loss: ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNlbGwlNUNsZWZ0JTI4JTVDbGVmdCU1QyU3QiU1Q21hdGhjYWwlN0JTJTdEJTVFJTdCaSU3RCU1Q3JpZ2h0JTVDJTdEJTVDcmlnaHQlMjklM0QlNUNzdW1fJTdCaSU3RCslNUNzdW1fJTdCaiU3RCU1Q2xlZnQlMjglNUNsb2crUCU1Q2xlZnQlMjh5XyU3QmolMkIxJTdEJTVFJTdCaSU3RCslN0MrJTVDYm9sZHN5bWJvbCU3QmglN0RfJTdCaiU3RCU1Q3JpZ2h0JTI5JTJCJTVDbG9nK2YlNUNsZWZ0JTI4ZF8lN0JqJTJCMSU3RCU1RSU3QmklN0QrJTdDKyU1Q2JvbGRzeW1ib2wlN0JoJTdEXyU3QmolN0QlNUNyaWdodCUyOSU1Q3JpZ2h0JTI5.png)
實驗使用的四個數據集:
New York City Taxi Dataset:共173 million記錄,299個事件類型,670753 個序列
Financial Transaction Dataset:共0.7 million記錄,2個事件類型,693499 個序列
Electrical Medical Records:204個事件類型,650個病人的序列
Stack OverFlow Dataset :共480k記錄,81個事件類型,6k用戶的序列
代碼地址: https://github.com/dunan/NeuralPointProcess
2. The Neural Hawkes Process: A Neurally Self-Modulating Multivariate Point Process(nips 2017)
上一篇論文中,lstm的不同時步的hidden state是離散的,換句話說:當一個新事件發生后,斷崖式變化。本文提出一個連續的hidden state變化方式。
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNtYXRoYmYlN0JoJTdEJTI4dCUyOSUzRCU1Q21hdGhiZiU3Qm8lN0RfJTdCaSU3RCslNUNvZG90JTI4MislNUNzaWdtYSUyODIrJTVDbWF0aGJmJTdCYyU3RCUyOHQlMjklMjktMSUyOSslNUN0ZXh0KyU3Qitmb3IrJTdEK3QrJTVDaW4lNUNsZWZ0JTI4dF8lN0JpLTElN0QlMkMrdF8lN0JpJTdEJTVDcmlnaHQlNUQ=.png)
事件
到事件
之間的
時刻,強度函數由
決定,
由
決定。注意
在上篇論文是沒有的哦,因為上一篇論文只有事件
到事件
,沒有他們之間的
時刻
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmFsaWduZWQlN0QrJTVDbWF0aGJmJTdCaSU3RF8lN0JpJTJCMSU3RCslMjYrJTVDbGVmdGFycm93KyU1Q3NpZ21hJTVDbGVmdCUyOCU1Q21hdGhiZiU3QlclN0RfJTdCJTVDbWF0aGJmJTdCaSU3RCU3RCslNUNtYXRoYmYlN0JrJTdEXyU3QmklN0QlMkIlNUNtYXRoYmYlN0JVJTdEXyU3QiU1Q21hdGhiZiU3QmklN0QlN0QrJTVDbWF0aGJmJTdCaCU3RCU1Q2xlZnQlMjh0XyU3QmklN0QlNUNyaWdodCUyOSUyQiU1Q21hdGhiZiU3QmQlN0RfJTdCJTVDbWF0aGJmJTdCaSU3RCU3RCU1Q3JpZ2h0JTI5KyU1QyU1QyslNUNtYXRoYmYlN0JmJTdEXyU3QmklMkIxJTdEKyUyNislNUNsZWZ0YXJyb3crJTVDc2lnbWElNUNsZWZ0JTI4JTVDbWF0aGJmJTdCVyU3RF8lN0IlNUNtYXRoYmYlN0JmJTdEJTdEKyU1Q21hdGhiZiU3QmslN0RfJTdCaSU3RCUyQiU1Q21hdGhiZiU3QlUlN0RfJTdCJTVDbWF0aGJmJTdCZiU3RCU3RCslNUNtYXRoYmYlN0JoJTdEJTVDbGVmdCUyOHRfJTdCaSU3RCU1Q3JpZ2h0JTI5JTJCJTVDbWF0aGJmJTdCZCU3RF8lN0IlNUNtYXRoYmYlN0JmJTdEJTdEJTVDcmlnaHQlMjkrJTVDJTVDKyU1Q21hdGhiZiU3QnolN0RfJTdCaSUyQjElN0QrJTI2KyU1Q2xlZnRhcnJvdysyKyU1Q3NpZ21hJTVDbGVmdCUyOCU1Q21hdGhiZiU3QlclN0RfJTdCJTVDbWF0aGJmJTdCeiU3RCU3RCslNUNtYXRoYmYlN0JrJTdEXyU3QmklN0QlMkIlNUNtYXRoYmYlN0JVJTdEXyU3QiU1Q21hdGhiZiU3QnolN0QlN0QrJTVDbWF0aGJmJTdCaCU3RCU1Q2xlZnQlMjh0XyU3QmklN0QlNUNyaWdodCUyOSUyQiU1Q21hdGhiZiU3QmQlN0RfJTdCJTVDbWF0aGJmJTdCeiU3RCU3RCU1Q3JpZ2h0JTI5LTErJTVDJTVDKyU1Q21hdGhiZiU3Qm8lN0RfJTdCaSUyQjElN0QrJTI2KyU1Q2xlZnRhcnJvdyslNUNzaWdtYSU1Q2xlZnQlMjglNUNtYXRoYmYlN0JXJTdEXyU3QiU1Q21hdGhiZiU3Qm8lN0QlN0QrJTVDbWF0aGJmJTdCayU3RF8lN0JpJTdEJTJCJTVDbWF0aGJmJTdCVSU3RF8lN0IlNUNtYXRoYmYlN0JvJTdEJTdEKyU1Q21hdGhiZiU3QmglN0QlNUNsZWZ0JTI4dF8lN0JpJTdEJTVDcmlnaHQlMjklMkIlNUNtYXRoYmYlN0JkJTdEXyU3QiU1Q21hdGhiZiU3Qm8lN0QlN0QlNUNyaWdodCUyOSslNUNlbmQlN0JhbGlnbmVkJTdE.png)
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmFycmF5JTdEJTdCbCU3RCU1Q21hdGhiZiU3QmMlN0RfJTdCaSUyQjElN0QrJTVDbGVmdGFycm93KyU1Q21hdGhiZiU3QmYlN0RfJTdCaSUyQjElN0QrJTVDb2RvdCslNUNtYXRoYmYlN0JjJTdEJTVDbGVmdCUyOHRfJTdCaSU3RCU1Q3JpZ2h0JTI5JTJCJTVDbWF0aGJmJTdCaSU3RF8lN0JpJTJCMSU3RCslNUNvZG90KyU1Q21hdGhiZiU3QnolN0RfJTdCaSUyQjElN0QrJTVDJTVDKyU1Q292ZXJsaW5lJTdCJTVDbWF0aGJmJTdCYyU3RCU3RF8lN0JpJTJCMSU3RCslNUNsZWZ0YXJyb3crJTVDb3ZlcmxpbmUlN0IlNUNtYXRoYmYlN0JmJTdEJTdEXyU3QmklMkIxJTdEKyU1Q29kb3QrJTVDb3ZlcmxpbmUlN0IlNUNtYXRoYmYlN0JjJTdEJTdEXyU3QmklN0QlMkIlNUNvdmVybGluZSU3QiU1Q2JvbGRzeW1ib2wlN0IlNUNpbWF0aCU3RCU3RF8lN0JpJTJCMSU3RCslNUNvZG90KyU1Q21hdGhiZiU3QnolN0RfJTdCaSUyQjElN0QrJTVDJTVDKyU1Q2JvbGRzeW1ib2wlN0IlNUNkZWx0YSU3RF8lN0JpJTJCMSU3RCslNUNsZWZ0YXJyb3crZiU1Q2xlZnQlMjglNUNtYXRoYmYlN0JXJTdEXyU3QiU1Q21hdGhybSU3QmQlN0QlN0QrJTVDbWF0aGJmJTdCayU3RF8lN0JpJTdEJTJCJTVDbWF0aGJmJTdCVSU3RF8lN0IlNUNtYXRocm0lN0JkJTdEJTdEKyU1Q21hdGhiZiU3QmglN0QlNUNsZWZ0JTI4dF8lN0JpJTdEJTVDcmlnaHQlMjklMkIlNUNtYXRoYmYlN0JkJTdEXyU3QiU1Q21hdGhybSU3QmQlN0QlN0QlNUNyaWdodCUyOSU1Q2VuZCU3QmFycmF5JTdE.png)
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNtYXRoYmYlN0JjJTdEJTI4dCUyOSslNUNzdGFja3JlbCU3QiU1Q3RleHQrJTdCK2RlZislN0QlN0QlN0IlM0QlN0QrJTVDb3ZlcmxpbmUlN0IlNUNtYXRoYmYlN0JjJTdEJTdEXyU3QmklMkIxJTdEJTJCJTVDbGVmdCUyOCU1Q21hdGhiZiU3QmMlN0RfJTdCaSUyQjElN0QtJTVDb3ZlcmxpbmUlN0IlNUNtYXRoYmYlN0JjJTdEJTdEXyU3QmklMkIxJTdEJTVDcmlnaHQlMjkrJTVDZXhwKyU1Q2xlZnQlMjgtJTVDYm9sZHN5bWJvbCU3QiU1Q2RlbHRhJTdEXyU3QmklMkIxJTdEJTVDbGVmdCUyOHQtdF8lN0JpJTdEJTVDcmlnaHQlMjklNUNyaWdodCUyOSslNUN0ZXh0KyU3Qitmb3IrJTdEK3QrJTVDaW4lNUNsZWZ0JTI4dF8lN0JpJTdEJTJDK3RfJTdCaSUyQjElN0QlNUNyaWdodCU1RA==.png)
這里的
和
都不和上一篇論文中一樣,而是
和
在
時刻的值。
可見
事件
到事件
之間從
向
變化的,至於
怎么來的,大概是訓練的參數吧(還沒太明白)。
loss是根據強度函數算的:
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNlbGwlM0QlNUNzdW1fJTdCaSUzQSt0XyU3QmklN0QrJTVDbGVxK1QlN0QrJTVDbG9nKyU1Q2xhbWJkYV8lN0JrXyU3QmklN0QlN0QlNUNsZWZ0JTI4dF8lN0JpJTdEJTVDcmlnaHQlMjktJTVDdW5kZXJicmFjZSU3QiU1Q2ludF8lN0J0JTNEMCU3RCU1RSU3QlQlN0QrJTVDbGFtYmRhJTI4dCUyOStkK3QlN0RfJTdCJTVDdGV4dCslN0JjYWxsK3RoaXMrJTdEKyU1Q0xhbWJkYSU3RA==.png)
本文的測試數據集:
Retweets Dataset:3個事件類型,1739547 個序列,序列長度109
MemeTrack Dataset:5000個事件類型,93267 個序列,序列長度3
3. CTRec: A Long-Short Demands Evolution Model for Continuous-Time Recommendation(SIGIR 2019)
這篇文章主要是將深度點過程用在商品推薦上,之前的商品推薦只考慮推薦對的商品,沒有考慮在對的時間推薦對的商品,比如用戶剛買了個廁所讀物,不代表它喜歡廁所讀物,不能一直給他推薦廁所讀物,而應該考慮商品周期,等他看完了上一本,再給他推薦新的(長期需求)。再比如用戶買了個畫板,就得立馬推薦顏料了(短期需求)。總之,就是考慮用戶畫像、短期需求和長期需求。

論文有三個創新點:使用的連續lstm,就是上一篇論文中的;使用cnn捕捉短期需求;使用attention捕捉長期需求。
強度函數融合了用戶畫像、短期需求和長期需求。
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsYW1iZGFfJTdCaSU3RCUyOHQrJTNCKyU1Q3RoZXRhJTI5JTNEZiUyOCU1Q3VuZGVyYnJhY2UlN0J3XyU3QmklN0QlNUUlN0JpK3QrZSttKyU1Q3RvcCU3RCslNUNjZG90K2glMjh0JTI5JTdEXyU3QiU1Q3RleHQrJTdCc2hvcnQtdGVybSslN0QlN0QlMkIlNUN1bmRlcmJyYWNlJTdCd18lN0JpJTdEJTVFJTdCYSt0K3QrcitpJTVFJTdCJTVDdG9wJTdEJTdEKyU1Q2Nkb3QrJTVDdmFydGhldGElMjh0JTI5JTdEXyU3QiU1Q3RleHQrJTdCbG9uZy10ZXJtKyU3RCU3RCUyQiU1Q3VuZGVyYnJhY2UlN0J3XyU3QmklN0QlNUUlN0J1K3MrZStyKyU1Q3RvcCU3RCslNUNjZG90K3UlN0RfJTdCJTVDdGV4dCslN0JiYXNpYytkZW1hbmRzKyU3RCU3RCUyOQ==.png)
cnn使用k個核做多層卷積,最后average pooling。
attention:
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNhbHBoYV8lN0J0JTJDK3RfJTdCaiU3RCU3RCUzRCU1Q2JvbGRzeW1ib2wlN0JoJTdEJTVDbGVmdCUyOHRfJTdCaiU3RCU1Q3JpZ2h0JTI5JTVFJTdCJTVDdG9wJTdEKyU1Q2JvbGRzeW1ib2wlN0JpJTdEXyU3QnQlN0QtJTVDbGFtYmRhKyU1Q2xvZyslNUNsZWZ0JTI4JTVDbWF4KyU1Q2xlZnQlNUMlN0IlNUNnYW1tYSUyQytkXyU3QmFfJTdCdCU3RCUyQythXyU3QnRfJTdCaiU3RCU3RCU3RCU1RSU3QnUlN0QtJTVDRGVsdGFfJTdCYV8lN0J0JTdEJTJDK2FfJTdCdF8lN0JqJTdEJTdEJTdEJTVFJTdCdSU3RCU1Q3JpZ2h0JTVDJTdEJTVDcmlnaHQlMjk=.png)
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNtYXRoY2FsJTdCUCU3RF8lN0J0JTdEJTNEJTVDc3VtXyU3QmolM0QxJTdEJTVFJTdCbiU3RCslNUNmcmFjJTdCJTVDZXhwKyU1Q2xlZnQlMjglNUNhbHBoYV8lN0J0JTJDK3RfJTdCaiU3RCU3RCU1Q3JpZ2h0JTI5JTdEJTdCJTVDc3VtXyU3QnElM0QxJTdEJTVFJTdCbiU3RCslNUNleHArJTVDbGVmdCUyOCU1Q2FscGhhXyU3QnQlMkMrdF8lN0JxJTdEJTdEJTVDcmlnaHQlMjklN0QrJTVDYm9sZHN5bWJvbCU3QmglN0QlNUNsZWZ0JTI4dF8lN0JqJTdEJTVDcmlnaHQlMjk=.png)
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmFsaWduZWQlN0QrJTVDZWxsJTVDbGVmdCUyOElfJTdCdCU3RCU1RSU3QnUlN0QrJTNCKyU1Q3RoZXRhJTVDcmlnaHQlMjkrJTI2JTNEJTVDc3VtXyU3QmolM0QxJTdEJTVFJTdCbiU3RCslNUNsb2crJTVDb3BlcmF0b3JuYW1lJTdCUHIlN0QlNUNsZWZ0JTI4aV8lN0J0XyU3QmolN0QlN0QrJTdDK0lfJTdCdF8lN0JqJTdEJTdEJTVFJTdCdSU3RCUyQyslNUNEZWx0YSt0XyU3QmolN0QlNUNyaWdodCUyOSslNUMlNUMrJTI2JTNEJTVDdW5kZXJicmFjZSU3QiU1Q3N1bV8lN0JqJTNEMSU3RCU1RSU3Qm4lN0QrJTVDbG9nKyU1Q2xhbWJkYV8lN0JpXyU3QnRfJTdCaiU3RCU3RCU3RCU1Q2xlZnQlMjh0XyU3QmolN0QrJTNCKyU1Q3RoZXRhJTVDcmlnaHQlMjklN0RfJTdCJTVDdGV4dCslN0JwdXJjaGFzZSslN0QlN0QtJTVDc3VtXyU3QmlfJTdCJTVDdGV4dCslN0JuZWclN0QlN0QrJTVDaW4rSSU3RCslNUNpbnRfJTdCdF8lN0IxJTdEJTdEJTVFJTdCdF8lN0JuJTdEJTdEKyU1Q2xhbWJkYV8lN0JpXyU3QiU1Q3RleHQrJTdCbmVnJTdEJTdEJTdEJTI4dCUyOStkK3QrJTVDJTVDKyUyNiUzRCU1Q3N1bV8lN0JpXyU3QiU1Q3RleHQrJTdCbmVnJTdEJTdEKyU1Q2luK0klN0QrJTVDc3VtXyU3QmolM0QxJTdEJTVFJTdCbiU3RCU1Q2xlZnQlMjglNUNmcmFjJTdCMSU3RCU3QiU3Q0klN0MlN0QrJTVDbG9nKyU1Q2xhbWJkYV8lN0JpXyU3QnRfJTdCaiU3RCU3RCU3RCU1Q2xlZnQlMjh0XyU3QmolN0QrJTNCKyU1Q3RoZXRhJTVDcmlnaHQlMjktJTVDaW50XyU3QnRfJTdCai0xJTdEJTdEJTVFJTdCdF8lN0JqJTdEJTdEKyU1Q2xhbWJkYV8lN0IlNUN0ZXh0KyU3QmluZWclN0QlN0QlMjh0JTI5K2QrdCU1Q3JpZ2h0JTI5KyU1Q2VuZCU3QmFsaWduZWQlN0Q=.png)
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD1pXyU3Qm4lMkIlNUNlcHNpbG9uJTdEJTNEJTVDYXJnKyU1Q21heCtfJTdCaSU3RCslNUNpbnRfJTdCdF8lN0JuJTdEJTdEJTVFJTdCdF8lN0JuJTJCJTVDZXBzaWxvbiU3RCU3RCslNUNmcmFjJTdCJTVDbGFtYmRhXyU3QmklN0QlMjh0KyUzQislNUN0aGV0YSUyOSU3RCU3QiU1Q3N1bV8lN0JqKyU1Q2luK0klN0QrJTVDbGFtYmRhXyU3QmolN0QlMjh0KyUzQislNUN0aGV0YSUyOSU3RCtwXyU3QmklN0QlMjh0KyUzQislNUN0aGV0YSUyOStkK3QlMkMrJTVDZXBzaWxvbislNUNpbislNUNtYXRoYmIlN0JOJTdEJTVFJTdCJTJBJTdE.png)
