https://zhuanlan.zhihu.com/p/110171621
一、什么是时序点过程
现实世界中有这么个问题:有这么一系列历史事件,每个事件都有其对应的发生时间,也有其所属的事件类型,基于这一系列历史事件,预测下一个要发生的是什么类型的事件,以及其发生的时间。
比如下一次地震发生在何时,何地是事件类型,比如一种股票的下一次买卖将发生在何时,买入或卖出是事件类型,比如用户将在何时去下一个目的地,目的地是哪里是事件类型。
点过程可以对这一系列历史事件建模,来解决这个预测问题。
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNib2xkc3ltYm9sJTdCcyU3RCUzRCU1Q2xlZnQlNUMlN0IlNUNsZWZ0JTI4dF8lN0JpJTdEJTJDK2RfJTdCaSU3RCU1Q3JpZ2h0JTI5JTVDcmlnaHQlNUMlN0RfJTdCaSUzRDElN0QlNUUlN0JsJTdEJTJDK2RfJTdCaSU3RCslNUNpbislNUNtYXRoY2FsJTdCRCU3RCUzRCU1QyU3QjElMkMrJTVDbGRvdHMlMkMrRCU1QyU3RA==.png)
时序点过程的核心是强度函数
。
是截止
时刻之前事件类型
发生的总次数。
代表在时间窗口
内,事件类型
发生的概率。
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsYW1iZGFfZCUyOHQlMjlkdCslM0QrJTVDZnJhYyU3QiU1Q21hdGhiYiU3QkUlN0QlNUNsZWZ0JTVCJTVDbWF0aHJtJTdCZCU3RCtOXyU3QmQlN0QlMjh0JTI5KyU3QyslNUNtYXRoY2FsJTdCSCU3RF8lN0J0XyU3QiU1Q3RleHQrJTdCbGFzdCslN0QlN0QlN0QlNUNyaWdodCU1RGR0JTdEJTdCJTVDbWF0aHJtJTdCZCU3RCt0JTdEJTNEJTVDZnJhYyU3QnAlNUNsZWZ0JTI4dCUyQytkKyU3QyslNUNtYXRoY2FsJTdCSCU3RF8lN0J0XyU3QiU1Q3RleHQrJTdCbGFzdCslN0QlN0QlN0QlNUNyaWdodCUyOWR0JTdEJTdCMS1GJTVDbGVmdCUyOHQrJTdDKyU1Q21hdGhjYWwlN0JIJTdEXyU3QnRfJTdCJTVDdGV4dCslN0JsYXN0KyU3RCU3RCU3RCU1Q3JpZ2h0JTI5JTdE.png)
其中
代表基于历史行为,事件类型
在
时刻发生的条件概率密度函数;
代表基于历史行为,至少有一个事件类型在
发生的条件概率。强度函数
为:
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmFsaWduZWQlN0QrJTVDbGFtYmRhJTI4dCUyOSslMjYlM0QlNUNzdW1fJTdCZCUzRDElN0QlNUUlN0JEJTdEKyU1Q2xhbWJkYV8lN0JkJTdEJTI4dCUyOSslNUMlNUMrJTI2JTNEJTVDc3VtXyU3QmQlM0QxJTdEJTVFJTdCRCU3RCslNUNmcmFjJTdCcCU1Q2xlZnQlMjh0JTJDK2QrJTdDKyU1Q21hdGhjYWwlN0JIJTdEXyU3QnRfJTdCJTVDdGV4dCslN0JsYXN0KyU3RCU3RCU3RCU1Q3JpZ2h0JTI5JTdEJTdCMS1GJTVDbGVmdCUyOHQrJTdDKyU1Q21hdGhjYWwlN0JIJTdEXyU3QnRfJTdCJTVDdGV4dCslN0JsYXN0KyU3RCU3RCU3RCU1Q3JpZ2h0JTI5JTdEJTNEJTVDZnJhYyU3QnAlNUNsZWZ0JTI4dCslN0MrJTVDbWF0aGNhbCU3QkglN0RfJTdCdF8lN0IlNUN0ZXh0KyU3Qmxhc3QrJTdEJTdEJTdEJTVDcmlnaHQlMjklN0QlN0IxLUYlNUNsZWZ0JTI4dCslN0MrJTVDbWF0aGNhbCU3QkglN0RfJTdCJTVDdGV4dCslN0JsYXN0JTdEJTdEJTVDcmlnaHQlMjklN0QrJTVDJTVDKyUyNiUzRCU1Q2ZyYWMlN0IlNUNmcmFjJTdCJTVDbWF0aHJtJTdCZCU3RCtGJTVDbGVmdCUyOHQrJTdDKyU1Q21hdGhjYWwlN0JIJTdEXyU3QiU1Q3RleHQrJTdCbGFzdCslN0QlN0QlNUNyaWdodCUyOSU3RCU3QiU1Q21hdGhybSU3QmQlN0QrdCU3RCU3RCU3QjEtRiU1Q2xlZnQlMjh0KyU3QyslNUNtYXRoY2FsJTdCSCU3RF8lN0IlNUNsZWZ0LnRfJTdCJTVDdGV4dCslN0JsYXN0KyU3RCU3RCU1Q3JpZ2h0JTI5JTdEJTVDcmlnaHQuJTdEJTNELSU1Q2ZyYWMlN0IlNUNtYXRocm0lN0JkJTdEJTdEJTdCJTVDbWF0aHJtJTdCZCU3RCt0JTdEKyU1Q2xvZyslNUNsZWZ0JTI4MS1GJTVDbGVmdCUyOHQrJTdDKyU1Q21hdGhjYWwlN0JIJTdEXyU3QiU1Q3RleHQrJTdCbGFzdCslN0QlN0QlNUNyaWdodCUyOSU1Q3JpZ2h0JTI5KyU1Q2VuZCU3QmFsaWduZWQlN0Q=.png)
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmFsaWduZWQlN0QrRiU1Q2xlZnQlMjh0KyU3QyslNUNtYXRoY2FsJTdCSCU3RF8lN0J0XyU3QiU1Q3RleHQrJTdCbGFzdCU3RCU3RCU3RCU1Q3JpZ2h0JTI5KyUyNiUzRDEtJTVDZXhwKyU1Q2xlZnQlMjgtJTVDaW50XyU3QnRfJTdCJTVDdGV4dCslN0Jsc3N0JTdEJTdEJTdEJTVFJTdCdCU3RCslNUNsYW1iZGElMjhzJTI5KyU1Q21hdGhybSU3QmQlN0QrcyU1Q3JpZ2h0JTI5KyU1QyU1QytwJTVDbGVmdCUyOHQrJTdDKyU1Q21hdGhjYWwlN0JIJTdEXyU3QnRfJTdCJTVDdGV4dCslN0JsYXN0JTdEJTdEJTdEJTVDcmlnaHQlMjkrJTI2JTNEJTVDbGFtYmRhJTI4dCUyOSslNUNleHArJTVDbGVmdCUyOC0lNUNpbnRfJTdCdF8lN0IlNUN0ZXh0KyU3Qmxhc3QlN0QlN0QlN0QlNUUlN0J0JTdEKyU1Q2xhbWJkYSUyOHMlMjkrJTVDbWF0aHJtJTdCZCU3RCtzJTVDcmlnaHQlMjkrJTVDJTVDK3AlNUNsZWZ0JTI4dCUyQytkKyU3QyslNUNtYXRoY2FsJTdCSCU3RF8lN0J0XyU3QiU1Q3RleHQrJTdCbHNzdCU3RCU3RCU3RCU1Q3JpZ2h0JTI5KyUyNiUzRCU1Q2xhbWJkYV8lN0JkJTdEJTI4dCUyOSslNUNleHArJTVDbGVmdCUyOC0lNUNpbnRfJTdCdF8lN0IlNUN0ZXh0KyU3Qmxhc3QlN0QlN0QlN0QlNUUlN0J0JTdEKyU1Q2xhbWJkYSUyOHMlMjkrJTVDbWF0aHJtJTdCZCU3RCtzJTVDcmlnaHQlMjkrJTVDJTVDK3AlNUNsZWZ0JTI4ZCslN0MrdCUyQyslNUNtYXRoY2FsJTdCSCU3RF8lN0J0XyU3QiU1Q3RleHQrJTdCbGFzdCU3RCU3RCU3RCU1Q3JpZ2h0JTI5KyUyNiUzRCU1Q2ZyYWMlN0IlNUNsYW1iZGFfJTdCZCU3RCUyOHQlMjklN0QlN0IlNUNsYW1iZGElMjh0JTI5JTdEKyU1Q2VuZCU3QmFsaWduZWQlN0Q=.png)
因此,只要能根据历史事件模拟出强度函数
,则可以根据
预测下一个事件。对
的模拟将点过程分为传统点过程和深度点过程。
二、传统点过程
1.homogeneous poisson process假设
独立于历史事件,且随着
的变化恒定,即
。inhomogeneous poisson process假设
独立于历史事件,且随着
的变化而变化,即 ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsYW1iZGElMjh0JTI5KyUzRCtnJTI4dCUyOSU1Q2dlcTA=.png)
2.hawkes process 认为历史事件有激励作用:
,
,
, ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZXRhJTVDZ2VxMA==.png)
3. self-correcting process 认为强度函数的趋势是一直在增大,但是当一个事件发生后,会先减小。
,
, ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNhbHBoYSUzRTA=.png)
三、深度点过程
传统点过程缺点:
(1)传统点过程对强度函数有着上述设定,很有可能不符合实际情况,比如历史事件对强度函数的影响并不一定是累加的;
(2)如果有多种事件类型的话,还需作出各个事件类型是互相独立的假设,并且对每个事件类型求强度函数;
(3)传统点过程对数据的缺失处理不是很好,有时我们只能观测到一部分事件。
深度点过程就无需这么麻烦,用神经网络这样的非线性函数模拟强度函数,这样一个黑盒子无需设定任何先验知识。
1. Recurrent Markd Temporal Point Processes:Embedding Event History to Vector(kdd2016)

输入层:事件类型和发生时间为输入。事件类型用词向量,时间用时间的特征(比如是否周末,是否深夜等)
事件类型生成:普通的softmax
强度函数为:
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsYW1iZGElMjh0JTI5JTNEJTVDZXhwKyUyOCU1Q3VuZGVyYnJhY2UlN0IlNUNib2xkc3ltYm9sJTdCdiU3RCU1RSU3QnQlNUUlN0IlNUN0b3AlN0QlN0QrJTVDY2RvdCslNUNib2xkc3ltYm9sJTdCaCU3RF8lN0JqJTdEJTdEXyU3QiU1Q3RleHQrJTdCcGFzdCtpbmZsdWVuY2UrJTdEJTdEJTJCJTVDdW5kZXJicmFjZSU3QnclNUUlN0J0JTdEJTVDbGVmdCUyOHQtdF8lN0JqJTdEJTVDcmlnaHQlMjklN0RfJTdCJTVDdGV4dCslN0JjdXJyZW50K2luZmx1ZW5jZSslN0QlN0QlMkIlNUN1bmRlcmJyYWNlJTdCYiU1RSU3QnQlN0QlN0RfJTdCJTVDdGV4dCslN0JiYXNlK2ludGVuc2l0eSslN0QlN0QlMjk=.png)
时间生成:用下面这种求平均值的算法比较复杂,没有数值解,有一种简单的解法,我还没弄明白是啥...
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmFycmF5JTdEJTdCbCU3RGYlMjh0JTI5JTNEJTVDbGFtYmRhJTI4dCUyOSslNUNleHArJTVDbGVmdCUyOC0lNUNpbnRfJTdCdF8lN0JqJTdEJTdEJTVFJTdCdCU3RCslNUNsYW1iZGElMjglNUN0YXUlMjkrZCslNUN0YXUlNUNyaWdodCUyOSslNUMlNUMrJTNEJTVDZXhwKyU1Q2xlZnQlNUMlN0IlNUNib2xkc3ltYm9sJTdCdiU3RCU1RSU3QnQlNUUlN0IlNUN0b3AlN0QlN0QrJTVDY2RvdCslNUNib2xkc3ltYm9sJTdCaCU3RF8lN0JqJTdEJTJCdyU1RSU3QnQlN0QlNUNsZWZ0JTI4dC10XyU3QmolN0QlNUNyaWdodCUyOSUyQmIlNUUlN0J0JTdEJTJCJTVDZnJhYyU3QjElN0QlN0J3JTdEKyU1Q2V4cCslNUNsZWZ0JTI4JTVDYm9sZHN5bWJvbCU3QnYlN0QlNUUlN0J0JTVFJTdCJTVDdG9wJTdEJTdEKyU1Q2Nkb3QrJTVDYm9sZHN5bWJvbCU3QmglN0RfJTdCaiU3RCUyQmIlNUUlN0J0JTdEJTVDcmlnaHQlMjklNUNyaWdodC4rJTVDJTVDKyU1Q2xlZnQuLSU1Q2ZyYWMlN0IxJTdEJTdCdyU3RCslNUNleHArJTVDbGVmdCUyOCU1Q2JvbGRzeW1ib2wlN0J2JTdEJTVFJTdCdCU1RSU3QiU1Q3RvcCU3RCU3RCslNUNjZG90KyU1Q2JvbGRzeW1ib2wlN0JoJTdEXyU3QmolN0QlMkJ3JTVFJTdCdCU3RCU1Q2xlZnQlMjh0LXRfJTdCaiU3RCU1Q3JpZ2h0JTI5JTJCYiU1RSU3QnQlN0QlNUNyaWdodCUyOSU1Q3JpZ2h0JTVDJTdEJTVDZW5kJTdCYXJyYXklN0Q=.png)
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNoYXQlN0J0JTdEXyU3QmolMkIxJTdEJTNEJTVDaW50XyU3QnRfJTdCaiU3RCU3RCU1RSU3QiU1Q2luZnR5JTdEK3QrJTVDY2RvdCtmJTI4dCUyOStkK3Q=.png)
loss: ![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNlbGwlNUNsZWZ0JTI4JTVDbGVmdCU1QyU3QiU1Q21hdGhjYWwlN0JTJTdEJTVFJTdCaSU3RCU1Q3JpZ2h0JTVDJTdEJTVDcmlnaHQlMjklM0QlNUNzdW1fJTdCaSU3RCslNUNzdW1fJTdCaiU3RCU1Q2xlZnQlMjglNUNsb2crUCU1Q2xlZnQlMjh5XyU3QmolMkIxJTdEJTVFJTdCaSU3RCslN0MrJTVDYm9sZHN5bWJvbCU3QmglN0RfJTdCaiU3RCU1Q3JpZ2h0JTI5JTJCJTVDbG9nK2YlNUNsZWZ0JTI4ZF8lN0JqJTJCMSU3RCU1RSU3QmklN0QrJTdDKyU1Q2JvbGRzeW1ib2wlN0JoJTdEXyU3QmolN0QlNUNyaWdodCUyOSU1Q3JpZ2h0JTI5.png)
实验使用的四个数据集:
New York City Taxi Dataset:共173 million记录,299个事件类型,670753 个序列
Financial Transaction Dataset:共0.7 million记录,2个事件类型,693499 个序列
Electrical Medical Records:204个事件类型,650个病人的序列
Stack OverFlow Dataset :共480k记录,81个事件类型,6k用户的序列
代码地址: https://github.com/dunan/NeuralPointProcess
2. The Neural Hawkes Process: A Neurally Self-Modulating Multivariate Point Process(nips 2017)
上一篇论文中,lstm的不同时步的hidden state是离散的,换句话说:当一个新事件发生后,断崖式变化。本文提出一个连续的hidden state变化方式。
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNtYXRoYmYlN0JoJTdEJTI4dCUyOSUzRCU1Q21hdGhiZiU3Qm8lN0RfJTdCaSU3RCslNUNvZG90JTI4MislNUNzaWdtYSUyODIrJTVDbWF0aGJmJTdCYyU3RCUyOHQlMjklMjktMSUyOSslNUN0ZXh0KyU3Qitmb3IrJTdEK3QrJTVDaW4lNUNsZWZ0JTI4dF8lN0JpLTElN0QlMkMrdF8lN0JpJTdEJTVDcmlnaHQlNUQ=.png)
事件
到事件
之间的
时刻,强度函数由
决定,
由
决定。注意
在上篇论文是没有的哦,因为上一篇论文只有事件
到事件
,没有他们之间的
时刻
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmFsaWduZWQlN0QrJTVDbWF0aGJmJTdCaSU3RF8lN0JpJTJCMSU3RCslMjYrJTVDbGVmdGFycm93KyU1Q3NpZ21hJTVDbGVmdCUyOCU1Q21hdGhiZiU3QlclN0RfJTdCJTVDbWF0aGJmJTdCaSU3RCU3RCslNUNtYXRoYmYlN0JrJTdEXyU3QmklN0QlMkIlNUNtYXRoYmYlN0JVJTdEXyU3QiU1Q21hdGhiZiU3QmklN0QlN0QrJTVDbWF0aGJmJTdCaCU3RCU1Q2xlZnQlMjh0XyU3QmklN0QlNUNyaWdodCUyOSUyQiU1Q21hdGhiZiU3QmQlN0RfJTdCJTVDbWF0aGJmJTdCaSU3RCU3RCU1Q3JpZ2h0JTI5KyU1QyU1QyslNUNtYXRoYmYlN0JmJTdEXyU3QmklMkIxJTdEKyUyNislNUNsZWZ0YXJyb3crJTVDc2lnbWElNUNsZWZ0JTI4JTVDbWF0aGJmJTdCVyU3RF8lN0IlNUNtYXRoYmYlN0JmJTdEJTdEKyU1Q21hdGhiZiU3QmslN0RfJTdCaSU3RCUyQiU1Q21hdGhiZiU3QlUlN0RfJTdCJTVDbWF0aGJmJTdCZiU3RCU3RCslNUNtYXRoYmYlN0JoJTdEJTVDbGVmdCUyOHRfJTdCaSU3RCU1Q3JpZ2h0JTI5JTJCJTVDbWF0aGJmJTdCZCU3RF8lN0IlNUNtYXRoYmYlN0JmJTdEJTdEJTVDcmlnaHQlMjkrJTVDJTVDKyU1Q21hdGhiZiU3QnolN0RfJTdCaSUyQjElN0QrJTI2KyU1Q2xlZnRhcnJvdysyKyU1Q3NpZ21hJTVDbGVmdCUyOCU1Q21hdGhiZiU3QlclN0RfJTdCJTVDbWF0aGJmJTdCeiU3RCU3RCslNUNtYXRoYmYlN0JrJTdEXyU3QmklN0QlMkIlNUNtYXRoYmYlN0JVJTdEXyU3QiU1Q21hdGhiZiU3QnolN0QlN0QrJTVDbWF0aGJmJTdCaCU3RCU1Q2xlZnQlMjh0XyU3QmklN0QlNUNyaWdodCUyOSUyQiU1Q21hdGhiZiU3QmQlN0RfJTdCJTVDbWF0aGJmJTdCeiU3RCU3RCU1Q3JpZ2h0JTI5LTErJTVDJTVDKyU1Q21hdGhiZiU3Qm8lN0RfJTdCaSUyQjElN0QrJTI2KyU1Q2xlZnRhcnJvdyslNUNzaWdtYSU1Q2xlZnQlMjglNUNtYXRoYmYlN0JXJTdEXyU3QiU1Q21hdGhiZiU3Qm8lN0QlN0QrJTVDbWF0aGJmJTdCayU3RF8lN0JpJTdEJTJCJTVDbWF0aGJmJTdCVSU3RF8lN0IlNUNtYXRoYmYlN0JvJTdEJTdEKyU1Q21hdGhiZiU3QmglN0QlNUNsZWZ0JTI4dF8lN0JpJTdEJTVDcmlnaHQlMjklMkIlNUNtYXRoYmYlN0JkJTdEXyU3QiU1Q21hdGhiZiU3Qm8lN0QlN0QlNUNyaWdodCUyOSslNUNlbmQlN0JhbGlnbmVkJTdE.png)
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmFycmF5JTdEJTdCbCU3RCU1Q21hdGhiZiU3QmMlN0RfJTdCaSUyQjElN0QrJTVDbGVmdGFycm93KyU1Q21hdGhiZiU3QmYlN0RfJTdCaSUyQjElN0QrJTVDb2RvdCslNUNtYXRoYmYlN0JjJTdEJTVDbGVmdCUyOHRfJTdCaSU3RCU1Q3JpZ2h0JTI5JTJCJTVDbWF0aGJmJTdCaSU3RF8lN0JpJTJCMSU3RCslNUNvZG90KyU1Q21hdGhiZiU3QnolN0RfJTdCaSUyQjElN0QrJTVDJTVDKyU1Q292ZXJsaW5lJTdCJTVDbWF0aGJmJTdCYyU3RCU3RF8lN0JpJTJCMSU3RCslNUNsZWZ0YXJyb3crJTVDb3ZlcmxpbmUlN0IlNUNtYXRoYmYlN0JmJTdEJTdEXyU3QmklMkIxJTdEKyU1Q29kb3QrJTVDb3ZlcmxpbmUlN0IlNUNtYXRoYmYlN0JjJTdEJTdEXyU3QmklN0QlMkIlNUNvdmVybGluZSU3QiU1Q2JvbGRzeW1ib2wlN0IlNUNpbWF0aCU3RCU3RF8lN0JpJTJCMSU3RCslNUNvZG90KyU1Q21hdGhiZiU3QnolN0RfJTdCaSUyQjElN0QrJTVDJTVDKyU1Q2JvbGRzeW1ib2wlN0IlNUNkZWx0YSU3RF8lN0JpJTJCMSU3RCslNUNsZWZ0YXJyb3crZiU1Q2xlZnQlMjglNUNtYXRoYmYlN0JXJTdEXyU3QiU1Q21hdGhybSU3QmQlN0QlN0QrJTVDbWF0aGJmJTdCayU3RF8lN0JpJTdEJTJCJTVDbWF0aGJmJTdCVSU3RF8lN0IlNUNtYXRocm0lN0JkJTdEJTdEKyU1Q21hdGhiZiU3QmglN0QlNUNsZWZ0JTI4dF8lN0JpJTdEJTVDcmlnaHQlMjklMkIlNUNtYXRoYmYlN0JkJTdEXyU3QiU1Q21hdGhybSU3QmQlN0QlN0QlNUNyaWdodCUyOSU1Q2VuZCU3QmFycmF5JTdE.png)
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNtYXRoYmYlN0JjJTdEJTI4dCUyOSslNUNzdGFja3JlbCU3QiU1Q3RleHQrJTdCK2RlZislN0QlN0QlN0IlM0QlN0QrJTVDb3ZlcmxpbmUlN0IlNUNtYXRoYmYlN0JjJTdEJTdEXyU3QmklMkIxJTdEJTJCJTVDbGVmdCUyOCU1Q21hdGhiZiU3QmMlN0RfJTdCaSUyQjElN0QtJTVDb3ZlcmxpbmUlN0IlNUNtYXRoYmYlN0JjJTdEJTdEXyU3QmklMkIxJTdEJTVDcmlnaHQlMjkrJTVDZXhwKyU1Q2xlZnQlMjgtJTVDYm9sZHN5bWJvbCU3QiU1Q2RlbHRhJTdEXyU3QmklMkIxJTdEJTVDbGVmdCUyOHQtdF8lN0JpJTdEJTVDcmlnaHQlMjklNUNyaWdodCUyOSslNUN0ZXh0KyU3Qitmb3IrJTdEK3QrJTVDaW4lNUNsZWZ0JTI4dF8lN0JpJTdEJTJDK3RfJTdCaSUyQjElN0QlNUNyaWdodCU1RA==.png)
这里的
和
都不和上一篇论文中一样,而是
和
在
时刻的值。
可见
事件
到事件
之间从
向
变化的,至于
怎么来的,大概是训练的参数吧(还没太明白)。
loss是根据强度函数算的:
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNlbGwlM0QlNUNzdW1fJTdCaSUzQSt0XyU3QmklN0QrJTVDbGVxK1QlN0QrJTVDbG9nKyU1Q2xhbWJkYV8lN0JrXyU3QmklN0QlN0QlNUNsZWZ0JTI4dF8lN0JpJTdEJTVDcmlnaHQlMjktJTVDdW5kZXJicmFjZSU3QiU1Q2ludF8lN0J0JTNEMCU3RCU1RSU3QlQlN0QrJTVDbGFtYmRhJTI4dCUyOStkK3QlN0RfJTdCJTVDdGV4dCslN0JjYWxsK3RoaXMrJTdEKyU1Q0xhbWJkYSU3RA==.png)
本文的测试数据集:
Retweets Dataset:3个事件类型,1739547 个序列,序列长度109
MemeTrack Dataset:5000个事件类型,93267 个序列,序列长度3
3. CTRec: A Long-Short Demands Evolution Model for Continuous-Time Recommendation(SIGIR 2019)
这篇文章主要是将深度点过程用在商品推荐上,之前的商品推荐只考虑推荐对的商品,没有考虑在对的时间推荐对的商品,比如用户刚买了个厕所读物,不代表它喜欢厕所读物,不能一直给他推荐厕所读物,而应该考虑商品周期,等他看完了上一本,再给他推荐新的(长期需求)。再比如用户买了个画板,就得立马推荐颜料了(短期需求)。总之,就是考虑用户画像、短期需求和长期需求。

论文有三个创新点:使用的连续lstm,就是上一篇论文中的;使用cnn捕捉短期需求;使用attention捕捉长期需求。
强度函数融合了用户画像、短期需求和长期需求。
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNsYW1iZGFfJTdCaSU3RCUyOHQrJTNCKyU1Q3RoZXRhJTI5JTNEZiUyOCU1Q3VuZGVyYnJhY2UlN0J3XyU3QmklN0QlNUUlN0JpK3QrZSttKyU1Q3RvcCU3RCslNUNjZG90K2glMjh0JTI5JTdEXyU3QiU1Q3RleHQrJTdCc2hvcnQtdGVybSslN0QlN0QlMkIlNUN1bmRlcmJyYWNlJTdCd18lN0JpJTdEJTVFJTdCYSt0K3QrcitpJTVFJTdCJTVDdG9wJTdEJTdEKyU1Q2Nkb3QrJTVDdmFydGhldGElMjh0JTI5JTdEXyU3QiU1Q3RleHQrJTdCbG9uZy10ZXJtKyU3RCU3RCUyQiU1Q3VuZGVyYnJhY2UlN0J3XyU3QmklN0QlNUUlN0J1K3MrZStyKyU1Q3RvcCU3RCslNUNjZG90K3UlN0RfJTdCJTVDdGV4dCslN0JiYXNpYytkZW1hbmRzKyU3RCU3RCUyOQ==.png)
cnn使用k个核做多层卷积,最后average pooling。
attention:
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNhbHBoYV8lN0J0JTJDK3RfJTdCaiU3RCU3RCUzRCU1Q2JvbGRzeW1ib2wlN0JoJTdEJTVDbGVmdCUyOHRfJTdCaiU3RCU1Q3JpZ2h0JTI5JTVFJTdCJTVDdG9wJTdEKyU1Q2JvbGRzeW1ib2wlN0JpJTdEXyU3QnQlN0QtJTVDbGFtYmRhKyU1Q2xvZyslNUNsZWZ0JTI4JTVDbWF4KyU1Q2xlZnQlNUMlN0IlNUNnYW1tYSUyQytkXyU3QmFfJTdCdCU3RCUyQythXyU3QnRfJTdCaiU3RCU3RCU3RCU1RSU3QnUlN0QtJTVDRGVsdGFfJTdCYV8lN0J0JTdEJTJDK2FfJTdCdF8lN0JqJTdEJTdEJTdEJTVFJTdCdSU3RCU1Q3JpZ2h0JTVDJTdEJTVDcmlnaHQlMjk=.png)
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNtYXRoY2FsJTdCUCU3RF8lN0J0JTdEJTNEJTVDc3VtXyU3QmolM0QxJTdEJTVFJTdCbiU3RCslNUNmcmFjJTdCJTVDZXhwKyU1Q2xlZnQlMjglNUNhbHBoYV8lN0J0JTJDK3RfJTdCaiU3RCU3RCU1Q3JpZ2h0JTI5JTdEJTdCJTVDc3VtXyU3QnElM0QxJTdEJTVFJTdCbiU3RCslNUNleHArJTVDbGVmdCUyOCU1Q2FscGhhXyU3QnQlMkMrdF8lN0JxJTdEJTdEJTVDcmlnaHQlMjklN0QrJTVDYm9sZHN5bWJvbCU3QmglN0QlNUNsZWZ0JTI4dF8lN0JqJTdEJTVDcmlnaHQlMjk=.png)
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmFsaWduZWQlN0QrJTVDZWxsJTVDbGVmdCUyOElfJTdCdCU3RCU1RSU3QnUlN0QrJTNCKyU1Q3RoZXRhJTVDcmlnaHQlMjkrJTI2JTNEJTVDc3VtXyU3QmolM0QxJTdEJTVFJTdCbiU3RCslNUNsb2crJTVDb3BlcmF0b3JuYW1lJTdCUHIlN0QlNUNsZWZ0JTI4aV8lN0J0XyU3QmolN0QlN0QrJTdDK0lfJTdCdF8lN0JqJTdEJTdEJTVFJTdCdSU3RCUyQyslNUNEZWx0YSt0XyU3QmolN0QlNUNyaWdodCUyOSslNUMlNUMrJTI2JTNEJTVDdW5kZXJicmFjZSU3QiU1Q3N1bV8lN0JqJTNEMSU3RCU1RSU3Qm4lN0QrJTVDbG9nKyU1Q2xhbWJkYV8lN0JpXyU3QnRfJTdCaiU3RCU3RCU3RCU1Q2xlZnQlMjh0XyU3QmolN0QrJTNCKyU1Q3RoZXRhJTVDcmlnaHQlMjklN0RfJTdCJTVDdGV4dCslN0JwdXJjaGFzZSslN0QlN0QtJTVDc3VtXyU3QmlfJTdCJTVDdGV4dCslN0JuZWclN0QlN0QrJTVDaW4rSSU3RCslNUNpbnRfJTdCdF8lN0IxJTdEJTdEJTVFJTdCdF8lN0JuJTdEJTdEKyU1Q2xhbWJkYV8lN0JpXyU3QiU1Q3RleHQrJTdCbmVnJTdEJTdEJTdEJTI4dCUyOStkK3QrJTVDJTVDKyUyNiUzRCU1Q3N1bV8lN0JpXyU3QiU1Q3RleHQrJTdCbmVnJTdEJTdEKyU1Q2luK0klN0QrJTVDc3VtXyU3QmolM0QxJTdEJTVFJTdCbiU3RCU1Q2xlZnQlMjglNUNmcmFjJTdCMSU3RCU3QiU3Q0klN0MlN0QrJTVDbG9nKyU1Q2xhbWJkYV8lN0JpXyU3QnRfJTdCaiU3RCU3RCU3RCU1Q2xlZnQlMjh0XyU3QmolN0QrJTNCKyU1Q3RoZXRhJTVDcmlnaHQlMjktJTVDaW50XyU3QnRfJTdCai0xJTdEJTdEJTVFJTdCdF8lN0JqJTdEJTdEKyU1Q2xhbWJkYV8lN0IlNUN0ZXh0KyU3QmluZWclN0QlN0QlMjh0JTI5K2QrdCU1Q3JpZ2h0JTI5KyU1Q2VuZCU3QmFsaWduZWQlN0Q=.png)
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD1pXyU3Qm4lMkIlNUNlcHNpbG9uJTdEJTNEJTVDYXJnKyU1Q21heCtfJTdCaSU3RCslNUNpbnRfJTdCdF8lN0JuJTdEJTdEJTVFJTdCdF8lN0JuJTJCJTVDZXBzaWxvbiU3RCU3RCslNUNmcmFjJTdCJTVDbGFtYmRhXyU3QmklN0QlMjh0KyUzQislNUN0aGV0YSUyOSU3RCU3QiU1Q3N1bV8lN0JqKyU1Q2luK0klN0QrJTVDbGFtYmRhXyU3QmolN0QlMjh0KyUzQislNUN0aGV0YSUyOSU3RCtwXyU3QmklN0QlMjh0KyUzQislNUN0aGV0YSUyOStkK3QlMkMrJTVDZXBzaWxvbislNUNpbislNUNtYXRoYmIlN0JOJTdEJTVFJTdCJTJBJTdE.png)
