@
目錄
- Vector3.normalized的特點是當前向量是不改變的並且返回一個新的規范化的向量;
- Vector3.Normalize的特點是改變當前向量,也就是當前向量長度是1
前言:國內復制粘貼太嚴重了,都不驗證一下,歐拉角部分全網都是2,1,0的排序但經過自己驗證0,1,2才是正確的(如有錯誤請指正)。
一、旋轉向量
1.1 初始化旋轉向量
旋轉角為alpha(順時針),旋轉軸為(x,y,z)
Eigen::AngleAxisd rotation_vector(alpha,Vector3d(x,y,z))
Eigen::AngleAxisd yawAngle(alpha,Vector3d::UnitZ());
1.2 旋轉向量轉旋轉矩陣
Eigen::Matrix3d rotation_matrix;
rotation_matrix=rotation_vector.matrix();
Eigen::Matrix3d rotation_matrix;
rotation_matrix=rotation_vector.toRotationMatrix();
1.3 旋轉向量轉歐拉角(xyz,即RPY)
Eigen::Vector3d eulerAngle=rotation_vector.matrix().eulerAngles(0,1,2);
1.4 旋轉向量轉四元數
Eigen::Quaterniond quaternion(rotation_vector);
Eigen::Quaterniond quaternion;
Quaterniond quaternion;
Eigen::Quaterniond quaternion;
quaternion=rotation_vector;
二、旋轉矩陣
2.1 初始化旋轉矩陣
Eigen::Matrix3d rotation_matrix;
rotation_matrix<<x_00,x_01,x_02,x_10,x_11,x_12,x_20,x_21,x_22;
2.2 旋轉矩陣轉旋轉向量
Eigen::AngleAxisd rotation_vector(rotation_matrix);
Eigen::AngleAxisd rotation_vector;
rotation_vector=rotation_matrix;
Eigen::AngleAxisd rotation_vector;
rotation_vector.fromRotationMatrix(rotation_matrix);
2.3 旋轉矩陣轉歐拉角(xyz,即RPY)
Eigen::Vector3d eulerAngle=rotation_matrix.eulerAngles(0,1,2);
2.4 旋轉矩陣轉四元數
Eigen::Quaterniond quaternion(rotation_matrix);
Eigen::Quaterniond quaternion;
quaternion=rotation_matrix;
三、歐拉角
3.1 初始化歐拉角(xyz,即RPY)
Eigen::Vector3d eulerAngle(roll,pitch,yaw);
3.2 歐拉角轉旋轉向量
Eigen::AngleAxisd rollAngle(AngleAxisd(eulerAngle(0),Vector3d::UnitX()));
Eigen::AngleAxisd pitchAngle(AngleAxisd(eulerAngle(1),Vector3d::UnitY()));
Eigen::AngleAxisd yawAngle(AngleAxisd(eulerAngle(2),Vector3d::UnitZ()));
Eigen::AngleAxisd rotation_vector;
rotation_vector=yawAngle*pitchAngle*rollAngle;
3.3 歐拉角轉旋轉矩陣
Eigen::AngleAxisd rollAngle(AngleAxisd(eulerAngle(0),Vector3d::UnitX()));
Eigen::AngleAxisd pitchAngle(AngleAxisd(eulerAngle(1),Vector3d::UnitY()));
Eigen::AngleAxisd yawAngle(AngleAxisd(eulerAngle(2),Vector3d::UnitZ()));
Eigen::Matrix3d rotation_matrix;
rotation_matrix=yawAngle*pitchAngle*rollAngle;
3.4 歐拉角轉四元數
Eigen::AngleAxisd rollAngle(AngleAxisd(eulerAngle(0),Vector3d::UnitX()));
Eigen::AngleAxisd pitchAngle(AngleAxisd(eulerAngle(1),Vector3d::UnitY()));
Eigen::AngleAxisd yawAngle(AngleAxisd(eulerAngle(2),Vector3d::UnitZ()));
Eigen::Quaterniond quaternion;
quaternion=yawAngle*pitchAngle*rollAngle;
四、四元數
4.1 初始化四元數
Eigen::Quaterniond quaternion(w,x,y,z);
4.2 四元數轉旋轉向量
Eigen::AngleAxisd rotation_vector(quaternion);
Eigen::AngleAxisd rotation_vector;
rotation_vector=quaternion;
4.3 四元數轉旋轉矩陣
Eigen::Matrix3d rotation_matrix;
rotation_matrix=quaternion.matrix();
Eigen::Matrix3d rotation_matrix;
rotation_matrix=quaternion.toRotationMatrix();
4.4 四元數轉歐拉角(xyz,即RPY)
Eigen::Vector3d eulerAngle=quaternion.matrix().eulerAngles(0,1,2);
五、Eigen::Affine3f和Eigen::Matrix4f的轉換
Eigen::Affine3f A;
Eigen::Matrix4f M;
M = A.matrix();
A = M;
六、float 和 double類型轉換
Eigen::MatrixXd matrix_d;
Eigen::MatrixXf matrix_f;
matrix_f = matrix_d.cast<float>();
繞固定坐標系轉和繞當前坐標系旋轉
//
// Created by qian on 2021/3/7.
//
#include "iostream"
#include <Eigen/Core>
#include <Eigen/Geometry>
#include <Eigen/Dense>
using namespace Eigen;
using namespace std;
int main(int argc, char **argv){
Vector3d t0(1,2,3);// 初始向量
Vector3d t(3,2,1); // 平移向量
const float angle_x=30.0, angle_y=20.0, angle_z=10.0;
// *************繞XYZ為當前坐標系旋轉軸************
AngleAxisd rotation_X=AngleAxisd(angle_x/180.0*M_PI,Vector3d::UnitX());
//固定坐標系的 Y 軸先投影成 X 旋轉后的旋轉軸,再進行旋轉
AngleAxisd rotation_Y=AngleAxisd(angle_y/180.0*M_PI,rotation_X.inverse()*Vector3d::UnitY());
//固定坐標系的 Z 軸先投影成 XY 旋轉后的旋轉軸,再進行旋轉
AngleAxisd rotation_Z=AngleAxisd(angle_z/180.0*M_PI,rotation_Y.inverse()*rotation_X.inverse()*Vector3d::UnitZ());
// 旋轉向量
AngleAxisd rotation_vector1;
rotation_vector1=rotation_X*rotation_Y*rotation_Z;
cout<<"旋轉角:"<<rotation_vector1.angle()*180.0/M_PI<<", 旋轉軸"<<rotation_vector1.axis().transpose()<<endl;
// 旋轉矩陣
Matrix3d rotation_matrix1(rotation_vector1);
cout<<"旋轉矩陣:\n"<<rotation_matrix1<<endl;
// 四元數
Quaterniond q1(rotation_matrix1);
cout<<"四元數:\n"<<q1.coeffs()<<endl;
// 齊次歐式變換
Isometry3d T=Isometry3d::Identity();
T.rotate(rotation_vector1);
T.pretranslate(t);
cout<<"齊次歐式變換:\n"<<T.matrix()<<endl;
cout<<"旋轉平移變換后的向量"<<T*t0<<endl;
// **********繞XYZ為世界固定坐標系旋轉軸**********
AngleAxisd rotation_X2=AngleAxisd(angle_x/180.0*M_PI,Vector3d::UnitX());
AngleAxisd rotation_Y2=AngleAxisd(angle_y/180.0*M_PI,Vector3d::UnitY());
AngleAxisd rotation_Z2=AngleAxisd(angle_z/180.0*M_PI,Vector3d::UnitZ());
// 旋轉向量
AngleAxisd rotation_vector2;
rotation_vector2=rotation_Z2*rotation_Y2*rotation_X2;
cout<<"旋轉角:"<<rotation_vector2.angle()*180.0/M_PI<<", 旋轉軸"<<rotation_vector2.axis().transpose()<<endl;
// 旋轉矩陣
Matrix3d rotation_matrix2(rotation_vector2);
cout<<"旋轉矩陣:\n"<<rotation_matrix2<<endl;
// 四元數
Quaterniond q2(rotation_matrix2);
cout<<"四元數:\n"<<q2.coeffs()<<endl;
// 齊次歐式變換
Isometry3d T2=Isometry3d::Identity();
T2.rotate(rotation_vector2);
T2.pretranslate(t);
cout<<"齊次歐式變換:\n"<<T2.matrix()<<endl;
cout<<"旋轉平移變換后的向量"<<q2*t0+t<<endl;
cout<<rotation_matrix1*rotation_matrix2.transpose()<<endl;
return 0;
}