libtorch (pytorch c++) 教程(三)


基本模塊搭建

模塊化編程的思想非常重要,通過模塊化編程可以大幅減少重復的敲代碼過程,同時代碼可讀性也會增加。本章將講述如何使用libtorch搭建一些MLP和CNN的基本模塊。

MLP基本單元

首先是線性層的聲明和定義,包括初始化和前向傳播函數。代碼如下:

class LinearBnReluImpl : public torch::nn::Module{
public:
    LinearBnReluImpl(int intput_features, int output_features);
    torch::Tensor forward(torch::Tensor x);
private:
    //layers
    torch::nn::Linear ln{nullptr};
    torch::nn::BatchNorm1d bn{nullptr};
};
TORCH_MODULE(LinearBnRelu);

LinearBnReluImpl::LinearBnReluImpl(int in_features, int out_features){
    ln = register_module("ln", torch::nn::Linear(torch::nn::LinearOptions(in_features, out_features)));
    bn = register_module("bn", torch::nn::BatchNorm1d(out_features));
}

torch::Tensor LinearBnReluImpl::forward(torch::Tensor x){
    x = torch::relu(ln->forward(x));
    x = bn(x);
    return x;
}

在MLP的構造線性層模塊類時,我們繼承了torch::nn::Module類,將初始化和前向傳播模塊作為public,可以給對象使用,而里面的線性層torch::nn::Linear和歸一化層torch::nn::BatchNorm1d被隱藏作為私有變量。

定義初始化函數時,需要將原本的指針對象ln和bn進行賦值,同時將兩者的名稱也確定。前向傳播函數就和pytorch中的forward類似。

CNN基本單元

CNN的基本單元構建和MLP的構建類似,但是又稍有不同,首先需要定義的時卷積超參數確定函數。

inline torch::nn::Conv2dOptions conv_options(int64_t in_planes, int64_t out_planes, int64_t kerner_size,
    int64_t stride = 1, int64_t padding = 0, bool with_bias = false) {
    torch::nn::Conv2dOptions conv_options = torch::nn::Conv2dOptions(in_planes, out_planes, kerner_size);
    conv_options.stride(stride);
    conv_options.padding(padding);
    conv_options.bias(with_bias);
    return conv_options;
}

該函數返回torch::nn::Conv2dOptions對象,對象的超參數由函數接口指定,這樣可以方便使用。同時指定inline,提高Release模式下代碼執行效率。

隨后則是和MLP的線性模塊類似,CNN的基本模塊由卷積層,激活函數和歸一化層組成。代碼如下:

class ConvReluBnImpl : public torch::nn::Module {
public:
    ConvReluBnImpl(int input_channel=3, int output_channel=64, int kernel_size = 3, int stride = 1);
    torch::Tensor forward(torch::Tensor x);
private:
    // Declare layers
    torch::nn::Conv2d conv{ nullptr };
    torch::nn::BatchNorm2d bn{ nullptr };
};
TORCH_MODULE(ConvReluBn);

ConvReluBnImpl::ConvReluBnImpl(int input_channel, int output_channel, int kernel_size, int stride) {
    conv = register_module("conv", torch::nn::Conv2d(conv_options(input_channel,output_channel,kernel_size,stride,kernel_size/2)));
    bn = register_module("bn", torch::nn::BatchNorm2d(output_channel));

}

torch::Tensor ConvReluBnImpl::forward(torch::Tensor x) {
    x = torch::relu(conv->forward(x));
    x = bn(x);
    return x;
}

簡單MLP

在MLP的例子中,我們以搭建一個四層感知機為例,介紹如何使用cpp實現深度學習模型。該感知機接受in_features個特征,輸出out_features個編碼后的特征。中間特征數定義為32,64和128,其實一般逆序效果更佳,但是只是作為例子也無關緊要。

class MLP: public torch::nn::Module{
public:
    MLP(int in_features, int out_features);
    torch::Tensor forward(torch::Tensor x);
private:
    int mid_features[3] = {32,64,128};
    LinearBnRelu ln1{nullptr};
    LinearBnRelu ln2{nullptr};
    LinearBnRelu ln3{nullptr};
    torch::nn::Linear out_ln{nullptr};
};

MLP::MLP(int in_features, int out_features){
    ln1 = LinearBnRelu(in_features, mid_features[0]);
    ln2 = LinearBnRelu(mid_features[0], mid_features[1]);
    ln3 = LinearBnRelu(mid_features[1], mid_features[2]);
    out_ln = torch::nn::Linear(mid_features[2], out_features);

    ln1 = register_module("ln1", ln1);
    ln2 = register_module("ln2", ln2);
    ln3 = register_module("ln3", ln3);
    out_ln = register_module("out_ln",out_ln);
}

torch::Tensor MLP::forward(torch::Tensor x){
    x = ln1->forward(x);
    x = ln2->forward(x);
    x = ln3->forward(x);
    x = out_ln->forward(x);
    return x;
}

每一層的實現均是通過前面定義的基本模塊LinearBnRelu。

簡單CNN

前面介紹了構建CNN的基本模塊ConvReluBn,接下來嘗試用c++搭建CNN模型。該CNN由三個stage組成,每個stage又由一個卷積層一個下采樣層組成。這樣相當於對原始輸入圖像進行了8倍下采樣。中間層的通道數變化與前面MLP特征數變化相同,均為輸入->32->64->128->輸出。

class plainCNN : public torch::nn::Module{
public:
    plainCNN(int in_channels, int out_channels);
    torch::Tensor forward(torch::Tensor x);
private:
    int mid_channels[3] = {32,64,128};
    ConvReluBn conv1{nullptr};
    ConvReluBn down1{nullptr};
    ConvReluBn conv2{nullptr};
    ConvReluBn down2{nullptr};
    ConvReluBn conv3{nullptr};
    ConvReluBn down3{nullptr};
    torch::nn::Conv2d out_conv{nullptr};
};

plainCNN::plainCNN(int in_channels, int out_channels){
    conv1 = ConvReluBn(in_channels,mid_channels[0],3);
    down1 = ConvReluBn(mid_channels[0],mid_channels[0],3,2);
    conv2 = ConvReluBn(mid_channels[0],mid_channels[1],3);
    down2 = ConvReluBn(mid_channels[1],mid_channels[1],3,2);
    conv3 = ConvReluBn(mid_channels[1],mid_channels[2],3);
    down3 = ConvReluBn(mid_channels[2],mid_channels[2],3,2);
    out_conv = torch::nn::Conv2d(conv_options(mid_channels[2],out_channels,3));

    conv1 = register_module("conv1",conv1);
    down1 = register_module("down1",down1);
    conv2 = register_module("conv2",conv2);
    down2 = register_module("down2",down2);
    conv3 = register_module("conv3",conv3);
    down3 = register_module("down3",down3);
    out_conv = register_module("out_conv",out_conv);
}

torch::Tensor plainCNN::forward(torch::Tensor x){
    x = conv1->forward(x);
    x = down1->forward(x);
    x = conv2->forward(x);
    x = down2->forward(x);
    x = conv3->forward(x);
    x = down3->forward(x);
    x = out_conv->forward(x);
    return x;
}

假定輸入一個三通道圖片,輸出通道數定義為n,輸入表示一個[1,3,224,224]的張量,將得到一個[1,n,28,28]的輸出張量。

簡單LSTM

最后則是一個簡單的LSTM的例子,用以處理時序型特征。在直接使用torch::nn::LSTM類之前,我們先頂一個返回torch::nn::LSTMOptions對象的函數,該函數接受關於LSTM的超參數,返回這些超參數定義的結果。

inline torch::nn::LSTMOptions lstmOption(int in_features, int hidden_layer_size, int num_layers, bool batch_first = false, bool bidirectional = false){
    torch::nn::LSTMOptions lstmOption = torch::nn::LSTMOptions(in_features, hidden_layer_size);
    lstmOption.num_layers(num_layers).batch_first(batch_first).bidirectional(bidirectional);
    return lstmOption;
}

//batch_first: true for io(batch, seq, feature) else io(seq, batch, feature)
class LSTM: public torch::nn::Module{
public:
    LSTM(int in_features, int hidden_layer_size, int out_size, int num_layers, bool batch_first);
    torch::Tensor forward(torch::Tensor x);
private:
    torch::nn::LSTM lstm{nullptr};
    torch::nn::Linear ln{nullptr};
    std::tuple<torch::Tensor, torch::Tensor> hidden_cell;
};

聲明好LSTM以后,我們將內部的初始化函數和前向傳播函數實現如下:

LSTM::LSTM(int in_features, int hidden_layer_size, int out_size, int num_layers, bool batch_first){
    lstm = torch::nn::LSTM(lstmOption(in_features, hidden_layer_size, num_layers, batch_first));
    ln = torch::nn::Linear(hidden_layer_size, out_size);

    lstm = register_module("lstm",lstm);
    ln = register_module("ln",ln);
}

torch::Tensor LSTM::forward(torch::Tensor x){
    auto lstm_out = lstm->forward(x);
    auto predictions = ln->forward(std::get<0>(lstm_out));
    return predictions.select(1,-1);
}

分享不易,如果有用請不吝給我一個👍,轉載注明出處:https://allentdan.github.io/
代碼見LibtorchTutorials


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM