摘要: Flink是jvm之上的大數據處理引擎。
Flink是jvm之上的大數據處理引擎,jvm存在java對象存儲密度低、full gc時消耗性能,gc存在stw的問題,同時omm時會影響穩定性。同時針對頻繁序列化和反序列化問題flink使用堆內堆外內存可以直接在一些場景下操作二進制數據,減少序列化反序列化的消耗。同時基於大數據流式處理的特點,flink定制了自己的一套序列化框架。flink也會基於cpu L1 L2 L3高速緩存的機制以及局部性原理,設計使用緩存友好的數據結構。flink內存管理和spark的tungsten的內存管理的出發點很相似。
內存模型
Flink可以使用堆內和堆外內存,內存模型如圖所示:
flink使用內存划分為堆內內存和堆外內存。按照用途可以划分為task所用內存,network memory、managed memory、以及framework所用內存,其中task network managed所用內存計入slot內存。framework為taskmanager公用。
堆內內存包含用戶代碼所用內存、heapstatebackend、框架執行所用內存。
堆外內存是未經jvm虛擬化的內存,直接映射到操作系統的內存地址,堆外內存包含框架執行所用內存,jvm堆外內存、Direct、native等。
Direct memory內存可用於網絡傳輸緩沖。network memory屬於direct memory的范疇,flink可以借助於此進行zero copy,從而減少內核態到用戶態copy次數,從而進行更高效的io操作。
jvm metaspace存放jvm加載的類的元數據,加載的類越多,需要的空間越大,overhead用於jvm的其他開銷,如native memory、code cache、thread stack等。
Managed Memory主要用於RocksDBStateBackend和批處理算子,也屬於native memory的范疇,其中rocksdbstatebackend對應rocksdb,rocksdb基於lsm數據結構實現,每個state對應一個列族,占有獨立的writebuffer,rocksdb占用native內存大小為 blockCahe + writebufferNum * writeBuffer + index ,同時堆外內存是進程之間共享的,jvm虛擬化大量heap內存耗時較久,使用堆外內存的話可以有效的避免該環節。但堆外內存也有一定的弊端,即監控調試使用相對復雜,對於生命周期較短的segment使用堆內內存開銷更低,flink在一些情況下,直接操作二進制數據,避免一些反序列化帶來的開銷。如果需要處理的數據超出了內存限制,則會將部分數據存儲到硬盤上。
內存管理
類似於OS中的page機制,flink模擬了操作系統的機制,通過page來管理內存,flink對應page的數據結構為dataview和MemorySegment,memorysegment是flink內存分配的最小單位,默認32kb,其可以在堆上也可以在堆外,flink通過MemorySegment的數據結構來訪問堆內堆外內存,借助於flink序列化機制(序列化機制會在下一小節講解),memorysegment提供了對二進制數據的讀取和寫入的方法,flink使用datainputview和dataoutputview進行memorysegment的二進制的讀取和寫入,flink可以通過HeapMemorySegment 管理堆內內存,通過HybridMemorySegment來管理堆內和堆外內存,MemorySegment管理jvm堆內存時,其定義一個字節數組的引用指向內存端,基於該內部字節數組的引用進行操作的HeapMemorySegment。
public abstract class MemorySegment { /** * The heap byte array object relative to which we access the memory. * 如果為堆內存,則指向訪問的內存的引用,否則若內存為非堆內存,則為null * <p>Is non-<tt>null</tt> if the memory is on the heap, and is <tt>null</tt>, if the memory is * off the heap. If we have this buffer, we must never void this reference, or the memory * segment will point to undefined addresses outside the heap and may in out-of-order execution * cases cause segmentation faults. */ protected final byte[] heapMemory; /** * The address to the data, relative to the heap memory byte array. If the heap memory byte * array is <tt>null</tt>, this becomes an absolute memory address outside the heap. * 字節數組對應的相對地址 */ protected long address; }
HeapMemorySegment用來分配堆上內存。
public final class HeapMemorySegment extends MemorySegment { /** * An extra reference to the heap memory, so we can let byte array checks fail by the built-in * checks automatically without extra checks. * 字節數組的引用指向該內存段 */ private byte[] memory; public void free() { super.free(); this.memory = null; } public final void get(DataOutput out, int offset, int length) throws IOException { out.write(this.memory, offset, length); } }
HybridMemorySegment即支持onheap和offheap內存,flink通過jvm的unsafe操作,如果對象o不為null,為onheap的場景,並且后面的地址或者位置是相對位置,那么會直接對當前對象(比如數組)的相對位置進行操作。如果對象o為null,操作的內存塊不是JVM堆內存,為off-heap的場景,並且后面的地址是某個內存塊的絕對地址,那么這些方法的調用也相當於對該內存塊進行操作。
public final class HybridMemorySegment extends MemorySegment { @Override public ByteBuffer wrap(int offset, int length) { if (address <= addressLimit) { if (heapMemory != null) { return ByteBuffer.wrap(heapMemory, offset, length); } else { try { ByteBuffer wrapper = offHeapBuffer.duplicate(); wrapper.limit(offset + length); wrapper.position(offset); return wrapper; } catch (IllegalArgumentException e) { throw new IndexOutOfBoundsException(); } } } else { throw new IllegalStateException("segment has been freed"); } } }
flink通過MemorySegmentFactory來創建memorySegment,memorySegment是flink內存分配的最小單位。對於跨memorysegment的數據方位,flink抽象出一個訪問視圖,數據讀取datainputView,數據寫入dataoutputview。
/** * This interface defines a view over some memory that can be used to sequentially read the contents of the memory. * The view is typically backed by one or more {@link org.apache.flink.core.memory.MemorySegment}. */ @Public public interface DataInputView extends DataInput { private MemorySegment[] memorySegments; // view持有的MemorySegment的引用, 該組memorysegment可以視為一個內存頁, flink可以順序讀取memorysegmet中的數據 /** * Reads up to {@code len} bytes of memory and stores it into {@code b} starting at offset {@code off}. * It returns the number of read bytes or -1 if there is no more data left. * @param b byte array to store the data to * @param off offset into byte array * @param len byte length to read * @return the number of actually read bytes of -1 if there is no more data left */ int read(byte[] b, int off, int len) throws IOException; }
dataoutputview是數據寫入的視圖,outputview持有多個memorysegment的引用,flink可以順序的寫入segment。
/** * This interface defines a view over some memory that can be used to sequentially write contents to the memory. * The view is typically backed by one or more {@link org.apache.flink.core.memory.MemorySegment}. */ @Public public interface DataOutputView extends DataOutput { private final List<MemorySegment> memory; // memorysegment的引用 /** * Copies {@code numBytes} bytes from the source to this view. * @param source The source to copy the bytes from. * @param numBytes The number of bytes to copy. void write(DataInputView source, int numBytes) throws IOException; }
上一小節中講到的managedmemory內存部分,flink使用memorymanager來管理該內存,managedmemory只使用堆外內存,主要用於批處理中的sorting、hashing、以及caching(社區消息,未來流處理也會使用到該部分),在流計算中作為rocksdbstatebackend的部分內存。memeorymanager通過memorypool來管理memorysegment。
/** * The memory manager governs the memory that Flink uses for sorting, hashing, caching or off-heap state backends * (e.g. RocksDB). Memory is represented either in {@link MemorySegment}s of equal size or in reserved chunks of certain * size. Operators allocate the memory either by requesting a number of memory segments or by reserving chunks. * Any allocated memory has to be released to be reused later. * <p>The memory segments are represented as off-heap unsafe memory regions (both via {@link HybridMemorySegment}). * Releasing a memory segment will make it re-claimable by the garbage collector, but does not necessarily immediately * releases the underlying memory. */ public class MemoryManager { /** * Allocates a set of memory segments from this memory manager. * <p>The total allocated memory will not exceed its size limit, announced in the constructor. * @param owner The owner to associate with the memory segment, for the fallback release. * @param target The list into which to put the allocated memory pages. * @param numberOfPages The number of pages to allocate. * @throws MemoryAllocationException Thrown, if this memory manager does not have the requested amount * of memory pages any more. */ public void allocatePages( Object owner, Collection<MemorySegment> target, int numberOfPages) throws MemoryAllocationException { } private static void freeSegment(MemorySegment segment, @Nullable Collection<MemorySegment> segments) { segment.free(); if (segments != null) { segments.remove(segment); } } /** * Frees this memory segment. * <p>After this operation has been called, no further operations are possible on the memory * segment and will fail. The actual memory (heap or off-heap) will only be released after this * memory segment object has become garbage collected. */ public void free() { // this ensures we can place no more data and trigger // the checks for the freed segment address = addressLimit + 1; } }
對於上一小節中提到的NetWorkMemory的內存,flink使用networkbuffer做了一層buffer封裝。buffer的底層也是memorysegment,flink通過bufferpool來管理buffer,每個taskmanager都有一個netwokbufferpool,該tm上的各個task共享該networkbufferpool,同時task對應的localbufferpool所需的內存需要從networkbufferpool申請而來,它們都是flink申請的堆外內存。
上游算子向resultpartition寫入數據時,申請buffer資源,使用bufferbuilder將數據寫入memorysegment,下游算子從resultsubpartition消費數據時,利用bufferconsumer從memorysegment中讀取數據,bufferbuilder與bufferconsumer一一對應。同時這一流程也和flink的反壓機制相關。如圖
/** * A buffer pool used to manage a number of {@link Buffer} instances from the * {@link NetworkBufferPool}. * <p>Buffer requests are mediated to the network buffer pool to ensure dead-lock * free operation of the network stack by limiting the number of buffers per * local buffer pool. It also implements the default mechanism for buffer * recycling, which ensures that every buffer is ultimately returned to the * network buffer pool. * <p>The size of this pool can be dynamically changed at runtime ({@link #setNumBuffers(int)}. It * will then lazily return the required number of buffers to the {@link NetworkBufferPool} to * match its new size. */ class LocalBufferPool implements BufferPool { @Nullable private MemorySegment requestMemorySegment(int targetChannel) throws IOException { MemorySegment segment = null; synchronized (availableMemorySegments) { returnExcessMemorySegments(); if (availableMemorySegments.isEmpty()) { segment = requestMemorySegmentFromGlobal(); } // segment may have been released by buffer pool owner if (segment == null) { segment = availableMemorySegments.poll(); } if (segment == null) { availabilityHelper.resetUnavailable(); } if (segment != null && targetChannel != UNKNOWN_CHANNEL) { if (subpartitionBuffersCount[targetChannel]++ == maxBuffersPerChannel) { unavailableSubpartitionsCount++; availabilityHelper.resetUnavailable(); } } } return segment; } } /** * A result partition for data produced by a single task. * * <p>This class is the runtime part of a logical {@link IntermediateResultPartition}. Essentially, * a result partition is a collection of {@link Buffer} instances. The buffers are organized in one * or more {@link ResultSubpartition} instances, which further partition the data depending on the * number of consuming tasks and the data {@link DistributionPattern}. * <p>Tasks, which consume a result partition have to request one of its subpartitions. The request * happens either remotely (see {@link RemoteInputChannel}) or locally (see {@link LocalInputChannel}) The life-cycle of each result partition has three (possibly overlapping) phases: Produce Consume Release Buffer management State management */ public abstract class ResultPartition implements ResultPartitionWriter, BufferPoolOwner { @Override public BufferBuilder getBufferBuilder(int targetChannel) throws IOException, InterruptedException { checkInProduceState(); return bufferPool.requestBufferBuilderBlocking(targetChannel); } } }
自定義序列化框架
flink對自身支持的基本數據類型,實現了定制的序列化機制,flink數據集對象相對固定,可以只保存一份schema信息,從而節省存儲空間,數據序列化就是java對象和二進制數據之間的數據轉換,flink使用TypeInformation的createSerializer接口負責創建每種類型的序列化器,進行數據的序列化反序列化,類型信息在構建streamtransformation時通過typeextractor根據方法簽名類信息等提取類型信息並存儲在streamconfig中。
/** * Creates a serializer for the type. The serializer may use the ExecutionConfig * for parameterization. * 創建出對應類型的序列化器 * @param config The config used to parameterize the serializer. * @return A serializer for this type. */ @PublicEvolving public abstract TypeSerializer<T> createSerializer(ExecutionConfig config); /** * A utility for reflection analysis on classes, to determine the return type of implementations of transformation * functions. */ @Public public class TypeExtractor { /** * Creates a {@link TypeInformation} from the given parameters. * If the given {@code instance} implements {@link ResultTypeQueryable}, its information * is used to determine the type information. Otherwise, the type information is derived * based on the given class information. * @param instance instance to determine type information for * @param baseClass base class of {@code instance} * @param clazz class of {@code instance} * @param returnParamPos index of the return type in the type arguments of {@code clazz} * @param <OUT> output type * @return type information */ @SuppressWarnings("unchecked") @PublicEvolving public static <OUT> TypeInformation<OUT> createTypeInfo(Object instance, Class<?> baseClass, Class<?> clazz, int returnParamPos) { if (instance instanceof ResultTypeQueryable) { return ((ResultTypeQueryable<OUT>) instance).getProducedType(); } else { return createTypeInfo(baseClass, clazz, returnParamPos, null, null); } } }
對於嵌套的數據類型,flink從最內層的字段開始序列化,內層序列化的結果將組成外層序列化結果,反序列時,從內存中順序讀取二進制數據,根據偏移量反序列化為java對象。flink自帶序列化機制存儲密度很高,序列化對應的類型值即可。
flink中的table模塊在memorysegment的基礎上使用了BinaryRow的數據結構,可以更好地減少反序列化開銷,需要反序列化是可以只序列化相應的字段,而無需序列化整個對象。
同時你也可以注冊子類型和自定義序列化器,對於flink無法序列化的類型,會交給kryo進行處理,如果kryo也無法處理,將強制使用avro來序列化,kryo序列化性能相對flink自帶序列化機制較低,開發時可以使用env.getConfig().disableGenericTypes()來禁用kryo,盡量使用flink框架自帶的序列化器對應的數據類型。
緩存友好的數據結構
cpu中L1、L2、L3的緩存讀取速度比從內存中讀取數據快很多,高速緩存的訪問速度是主存的訪問速度的很多倍。另外一個重要的程序特性是局部性原理,程序常常使用它們最近使用的數據和指令,其中兩種局部性類型,時間局部性指最近訪問的內容很可能短期內被再次訪問,空間局部性是指地址相互臨近的項目很可能短時間內被再次訪問。
結合這兩個特性設計緩存友好的數據結構可以有效的提升緩存命中率和本地化特性,該特性主要用於排序操作中,常規情況下一個指針指向一個<key,v>對象,排序時需要根據指針pointer獲取到實際數據,然后再進行比較,這個環節涉及到內存的隨機訪問,緩存本地化會很低,使用序列化的定長key + pointer,這樣key就會連續存儲到內存中,避免的內存的隨機訪問,還可以提升cpu緩存命中率。對兩條記錄進行排序時首先比較key,如果大小不同直接返回結果,只需交換指針即可,不用交換實際數據,如果相同,則比較指針實際指向的數據。
后記
flink社區已走向流批一體的發展,后繼將更多的關注與流批一體的引擎實現及結合存儲層面的實現。flink服務請使用華為雲 EI DLI-FLINK serverless服務。
參考
[1]: https://ci.apache.org/projects/flink/flink-docs-stable/
[2]: https://github.com/apache/flink