ORBSLAM3·論文閱讀


        剛剛獲悉ORBSLAM3已經發表了論文並且將要開源了,找來論文看了看。

____________________________________________________________________________

   摘要:

       Abstract—This paper presents ORB-SLAM3, the first system able to perform visual, visual-inertial and multi-map SLAM with monocular, stereo and RGB-D cameras, using pin-hole and fisheye lens models.

      The first main novelty is a feature-based tightly-integrated visual-inertial SLAM system that fully relies on Maximum-aPosteriori (MAP) estimation, even during the IMU initialization phase. The result is a system that operates robustly in real time, in small and large, indoor and outdoor environments, and is 2 to 5 times more accurate than previous approaches.

      The second main novelty is a multiple map system that relies on a new place recognition method with improved recall. Thanks to it, ORB-SLAM3 is able to survive to long periods of poor visual information: when it gets lost, it starts a new map that will be seamlessly merged with previous maps when revisiting mapped areas. Compared with visual odometry systems that only use information from the last few seconds, ORB-SLAM3 is the first system able to reuse in all the algorithm stages all previousinformation.Thisallowstoincludeinbundleadjustment co-visible keyframes, that provide high parallax observations boosting accuracy, even if they are widely separated in time or if they come from a previous mapping session.

       Our experiments show that, in all sensor configurations, ORBSLAM3isasrobustasthebestsystemsavailableintheliterature, and significantly more accurate. Notably, our stereo-inertial SLAM achieves an average accuracy of 3.6cm on the EuRoC drone and 9mm under quick hand-held motions in the room of TUM-VI dataset, a setting representative of AR/VR scenarios. For the benefit of the community we make public the source code.

——————————————————————————

        orbslam3是第一個能夠執行視覺、視覺慣性和多地圖重擊的系統,這次它的新增元素有下面這幾個:

       1.加入了魚眼攝像頭。

       2.加入了imu

       3.加入了多地圖系統,在ORBslam2中如果圖像跟丟,那么必須回到原來的地方進行重定位,才能繼續跟蹤,而在新的ORBslam3中,如果跟丟,就會新開一個地圖,繼續跟蹤,當回到以前走過的地方,他會合並兩個地圖。還有在所有算法階段都可以重用以前的信息。

       精度:EuRoC :3.6cm ; TUM-VI dataset : 9mm 

       框架長這樣

 

 對比效果:

 

 

 demo參考:

https://mp.weixin.qq.com/s?src=11&timestamp=1595691480&ver=2482&signature=4*OL3a3F0hWfAs21oS6cAn2WhI0bUG*ygDnKHEL62bDaB-WwBsldrbN8lmfOOLsJbSYv2LhE-sinl0AI2BCEArDwy5hS*7L6851r6d*6PEkikSOcSucCl-1MtwiQUgJI&new=1

 

      

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM