ORBSLAM3·论文阅读


        刚刚获悉ORBSLAM3已经发表了论文并且将要开源了,找来论文看了看。

____________________________________________________________________________

   摘要:

       Abstract—This paper presents ORB-SLAM3, the first system able to perform visual, visual-inertial and multi-map SLAM with monocular, stereo and RGB-D cameras, using pin-hole and fisheye lens models.

      The first main novelty is a feature-based tightly-integrated visual-inertial SLAM system that fully relies on Maximum-aPosteriori (MAP) estimation, even during the IMU initialization phase. The result is a system that operates robustly in real time, in small and large, indoor and outdoor environments, and is 2 to 5 times more accurate than previous approaches.

      The second main novelty is a multiple map system that relies on a new place recognition method with improved recall. Thanks to it, ORB-SLAM3 is able to survive to long periods of poor visual information: when it gets lost, it starts a new map that will be seamlessly merged with previous maps when revisiting mapped areas. Compared with visual odometry systems that only use information from the last few seconds, ORB-SLAM3 is the first system able to reuse in all the algorithm stages all previousinformation.Thisallowstoincludeinbundleadjustment co-visible keyframes, that provide high parallax observations boosting accuracy, even if they are widely separated in time or if they come from a previous mapping session.

       Our experiments show that, in all sensor configurations, ORBSLAM3isasrobustasthebestsystemsavailableintheliterature, and significantly more accurate. Notably, our stereo-inertial SLAM achieves an average accuracy of 3.6cm on the EuRoC drone and 9mm under quick hand-held motions in the room of TUM-VI dataset, a setting representative of AR/VR scenarios. For the benefit of the community we make public the source code.

——————————————————————————

        orbslam3是第一个能够执行视觉、视觉惯性和多地图重击的系统,这次它的新增元素有下面这几个:

       1.加入了鱼眼摄像头。

       2.加入了imu

       3.加入了多地图系统,在ORBslam2中如果图像跟丢,那么必须回到原来的地方进行重定位,才能继续跟踪,而在新的ORBslam3中,如果跟丢,就会新开一个地图,继续跟踪,当回到以前走过的地方,他会合并两个地图。还有在所有算法阶段都可以重用以前的信息。

       精度:EuRoC :3.6cm ; TUM-VI dataset : 9mm 

       框架长这样

 

 对比效果:

 

 

 demo参考:

https://mp.weixin.qq.com/s?src=11&timestamp=1595691480&ver=2482&signature=4*OL3a3F0hWfAs21oS6cAn2WhI0bUG*ygDnKHEL62bDaB-WwBsldrbN8lmfOOLsJbSYv2LhE-sinl0AI2BCEArDwy5hS*7L6851r6d*6PEkikSOcSucCl-1MtwiQUgJI&new=1

 

      

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM