圖像灰度上移變換
該算法將實現圖像灰度值的上移,從而提升圖像的亮度,由於圖像的灰度值位於0到255之間,需要對灰度值進行溢出判斷。
代碼如下:
import cv2 import numpy as np import matplotlib.pyplot as plt img = cv2.imread("src.png") grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) height, width = grayImage.shape[:2] result = np.zeros((height, width), np.uint8) # 圖像灰度上移變換 for i in range(height): for j in range(width): if int(grayImage[i, j] + 50) > 255: gray = 255 else: gray = grayImage[i, j] + 50 result[i, j] = np.uint8(gray) cv2.imshow("src", grayImage) cv2.imshow("result", result) if cv2.waitKey() == 27: cv2.destroyAllWindows()
效果如下:
圖像對比度增強變換
import cv2 import numpy as np import matplotlib.pyplot as plt img = cv2.imread("src.png") grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) height, width = grayImage.shape[:2] result = np.zeros((height, width), np.uint8) # 圖像灰度上移變換 for i in range(height): for j in range(width): if int(grayImage[i, j]*1.5 + 50) > 255: gray = 255 else: gray = grayImage[i, j]*1.5 + 50 result[i, j] = np.uint8(gray) cv2.imshow("src", grayImage) cv2.imshow("result", result) if cv2.waitKey() == 27: cv2.destroyAllWindows()
效果如下:
圖像對比度增強減弱
import cv2 import numpy as np import matplotlib.pyplot as plt img = cv2.imread("src.png") grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) height, width = grayImage.shape[:2] result = np.zeros((height, width), np.uint8) # 圖像灰度上移變換 for i in range(height): for j in range(width): if int(grayImage[i, j]*0.8 + 50) > 255: gray = 255 else: gray = grayImage[i, j]*0.8 + 50 result[i, j] = np.uint8(gray) cv2.imshow("src", grayImage) cv2.imshow("result", result) if cv2.waitKey() == 27: cv2.destroyAllWindows()
效果如下:
圖像灰度反色變換
反色變換又稱為線性灰度補變換,它是對原圖像的像素值進行反轉,即黑色變為白色,白色變為黑色
import cv2 import numpy as np import matplotlib.pyplot as plt img = cv2.imread("src.png") grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) height, width = grayImage.shape[:2] result = np.zeros((height, width), np.uint8) # 圖像灰度上移變換 for i in range(height): for j in range(width): gray = 255 - int(grayImage[i,j]) result[i, j] = np.uint8(gray) cv2.imshow("src", grayImage) cv2.imshow("result", result) if cv2.waitKey() == 27: cv2.destroyAllWindows()
效果如下:
圖像灰度非線性變換: DB=DAxDA/255
圖像的灰度非線性變換主要包括對數變換、冪次變換、指數變換、分段函數變換,通過非線性關系對圖像進行灰度處理,下面主要講解三種常見類型的灰度非線性變換。
原始圖像的灰度值按照DB=DA*DA/255
import cv2 import numpy as np import matplotlib.pyplot as plt img = cv2.imread("src.png") grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) height, width = grayImage.shape[:2] result = np.zeros((height, width), np.uint8) # 圖像灰度上移變換 for i in range(height): for j in range(width): gray = int(grayImage[i, j])*int(grayImage[i, j])/255 result[i, j] = np.uint8(gray) cv2.imshow("src", grayImage) cv2.imshow("result", result) if cv2.waitKey() == 27: cv2.destroyAllWindows()
效果如下:
圖像灰度對數變換
由於對數曲線在像素值較低的區域斜率大,在像素值較高的區域斜率較小,所以圖像經過對數變換后,較暗區域的對比度將有所提升。這種變換可用於增強圖像的暗部細節,從而用來擴展被壓縮的高值圖像中的較暗像素。
對數變換實現了擴展低灰度值而壓縮高灰度值的效果,被廣泛地應用於頻譜圖像的顯示中。一個典型的應用是傅立葉頻譜,其動態范圍可能寬達0~106直接顯示頻譜時,圖像顯示設備的動態范圍往往不能滿足要求,從而丟失大量的暗部細節;而在使用對數變換之后,圖像的動態范圍被合理地非線性壓縮,從而可以清晰地顯示。在下圖中,未經變換的頻譜經過對數變換后,增加了低灰度區域的對比度,從而增強暗部的細節。
import cv2 import numpy as np import matplotlib.pyplot as plt def log_plot(c): x = np.arange(0, 256, 0.01) y = c * np.log(1+x) plt.plot(x, y, "r", linewidth=1) plt.rcParams["font.sans-serif"] = ["SimHei"] plt.title("對數變換函數") plt.xlim(0, 255) plt.ylim(0, 255) plt.show() # 對數變換 def log(c, img): output = c * np.log(1.0+img) output = np.uint8(output) return output img = cv2.imread("src.png") log_plot(42) result = log(42, img) cv2.imshow("src", img) cv2.imshow("result", result) if cv2.waitKey() == 27: cv2.destroyAllWindows()
圖像灰度伽瑪變換
伽瑪變換又稱為指數變換或冪次變換,另一種常用的灰度非線性變換。
Db = cXDa^y
- 當γ>1時,會拉伸圖像中灰度級較高的區域,壓縮灰度級較低的部分。
- 當γ<1時,會拉伸圖像中灰度級較低的區域,壓縮灰度級較高的部分。
- 當γ=1時,該灰度變換是線性的,此時通過線性方式改變原圖像。
import cv2 import numpy as np import matplotlib.pyplot as plt def gamma_plot(c, v): x = np.arange(0, 256, 0.01) y = c *x**v plt.plot(x, y, "r", linewidth=1) plt.rcParams["font.sans-serif"] = ["SimHei"] plt.title("對數變換函數") plt.xlim([0, 255]) plt.ylim([0, 255]) plt.show() # 對數變換 def gamma(img, c, v): lut = np.zeros(256, dtype=np.float32) for i in range(256): lut[i] = c*i**v # 灰度值的映射 output = cv2.LUT(img, lut) output = np.uint8(output + 0.5) return output img = cv2.imread("src.png") gamma_plot(0.0000005, 4) result = gamma(img, 0.0000005, 4) cv2.imshow("src", img) cv2.imshow("result", result) if cv2.waitKey() == 27: cv2.destroyAllWindows()