[Python圖像處理]十.圖像的灰度線性變換


圖像灰度上移變換

該算法將實現圖像灰度值的上移,從而提升圖像的亮度,由於圖像的灰度值位於0到255之間,需要對灰度值進行溢出判斷。

代碼如下:

import cv2
import numpy as np
import matplotlib.pyplot as plt

img = cv2.imread("src.png")
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
height, width = grayImage.shape[:2]
result = np.zeros((height, width), np.uint8)
# 圖像灰度上移變換
for i in range(height):
    for j in range(width):
        if int(grayImage[i, j] + 50) > 255:
            gray = 255
        else:
            gray = grayImage[i, j] + 50
        result[i, j] = np.uint8(gray)
cv2.imshow("src", grayImage)
cv2.imshow("result", result)

if cv2.waitKey() == 27:
    cv2.destroyAllWindows()

效果如下:

 

 圖像對比度增強變換

import cv2
import numpy as np
import matplotlib.pyplot as plt

img = cv2.imread("src.png")
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
height, width = grayImage.shape[:2]
result = np.zeros((height, width), np.uint8)
# 圖像灰度上移變換
for i in range(height):
    for j in range(width):
        if int(grayImage[i, j]*1.5 + 50) > 255:
            gray = 255
        else:
            gray = grayImage[i, j]*1.5 + 50
        result[i, j] = np.uint8(gray)
cv2.imshow("src", grayImage)
cv2.imshow("result", result)

if cv2.waitKey() == 27:
    cv2.destroyAllWindows()

效果如下:

 

 圖像對比度增強減弱

import cv2
import numpy as np
import matplotlib.pyplot as plt

img = cv2.imread("src.png")
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
height, width = grayImage.shape[:2]
result = np.zeros((height, width), np.uint8)
# 圖像灰度上移變換
for i in range(height):
    for j in range(width):
        if int(grayImage[i, j]*0.8 + 50) > 255:
            gray = 255
        else:
            gray = grayImage[i, j]*0.8 + 50
        result[i, j] = np.uint8(gray)
cv2.imshow("src", grayImage)
cv2.imshow("result", result)

if cv2.waitKey() == 27:
    cv2.destroyAllWindows()

效果如下:

 

 圖像灰度反色變換

反色變換又稱為線性灰度補變換,它是對原圖像的像素值進行反轉,即黑色變為白色,白色變為黑色

import cv2
import numpy as np
import matplotlib.pyplot as plt

img = cv2.imread("src.png")
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
height, width = grayImage.shape[:2]
result = np.zeros((height, width), np.uint8)
# 圖像灰度上移變換
for i in range(height):
    for j in range(width):
            gray = 255 - int(grayImage[i,j])
            result[i, j] = np.uint8(gray)
cv2.imshow("src", grayImage)
cv2.imshow("result", result)

if cv2.waitKey() == 27:
    cv2.destroyAllWindows()

效果如下:

 

 圖像灰度非線性變換: DB=DAxDA/255

圖像的灰度非線性變換主要包括對數變換、冪次變換、指數變換、分段函數變換,通過非線性關系對圖像進行灰度處理,下面主要講解三種常見類型的灰度非線性變換。

原始圖像的灰度值按照DB=DA*DA/255

import cv2
import numpy as np
import matplotlib.pyplot as plt

img = cv2.imread("src.png")
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
height, width = grayImage.shape[:2]
result = np.zeros((height, width), np.uint8)
# 圖像灰度上移變換
for i in range(height):
    for j in range(width):
            gray = int(grayImage[i, j])*int(grayImage[i, j])/255
            result[i, j] = np.uint8(gray)
cv2.imshow("src", grayImage)
cv2.imshow("result", result)

if cv2.waitKey() == 27:
    cv2.destroyAllWindows()

效果如下:

 

 圖像灰度對數變換

由於對數曲線在像素值較低的區域斜率大,在像素值較高的區域斜率較小,所以圖像經過對數變換后,較暗區域的對比度將有所提升。這種變換可用於增強圖像的暗部細節,從而用來擴展被壓縮的高值圖像中的較暗像素。

對數變換實現了擴展低灰度值而壓縮高灰度值的效果,被廣泛地應用於頻譜圖像的顯示中。一個典型的應用是傅立葉頻譜,其動態范圍可能寬達0~106直接顯示頻譜時,圖像顯示設備的動態范圍往往不能滿足要求,從而丟失大量的暗部細節;而在使用對數變換之后,圖像的動態范圍被合理地非線性壓縮,從而可以清晰地顯示。在下圖中,未經變換的頻譜經過對數變換后,增加了低灰度區域的對比度,從而增強暗部的細節。

import cv2
import numpy as np
import matplotlib.pyplot as plt

def log_plot(c):
    x = np.arange(0, 256, 0.01)
    y = c * np.log(1+x)
    plt.plot(x, y, "r", linewidth=1)
    plt.rcParams["font.sans-serif"] = ["SimHei"]
    plt.title("對數變換函數")
    plt.xlim(0, 255)
    plt.ylim(0, 255)
    plt.show()

# 對數變換
def log(c, img):
    output = c * np.log(1.0+img)
    output = np.uint8(output)
    return output

img = cv2.imread("src.png")
log_plot(42)
result = log(42, img)
cv2.imshow("src", img)
cv2.imshow("result", result)
if cv2.waitKey() == 27:
    cv2.destroyAllWindows()

 

 圖像灰度伽瑪變換

伽瑪變換又稱為指數變換或冪次變換,另一種常用的灰度非線性變換。

Db = cXDa^y

  • 當γ>1時,會拉伸圖像中灰度級較高的區域,壓縮灰度級較低的部分。
  • 當γ<1時,會拉伸圖像中灰度級較低的區域,壓縮灰度級較高的部分。
  • 當γ=1時,該灰度變換是線性的,此時通過線性方式改變原圖像。

 

import cv2
import numpy as np
import matplotlib.pyplot as plt

def gamma_plot(c, v):
    x = np.arange(0, 256, 0.01)
    y = c *x**v
    plt.plot(x, y, "r", linewidth=1)
    plt.rcParams["font.sans-serif"] = ["SimHei"]
    plt.title("對數變換函數")
    plt.xlim([0, 255])
    plt.ylim([0, 255])
    plt.show()

# 對數變換
def gamma(img, c, v):
    lut = np.zeros(256, dtype=np.float32)
    for i in range(256):
        lut[i] = c*i**v
    # 灰度值的映射
    output = cv2.LUT(img, lut)
    output = np.uint8(output + 0.5)
    return output

img = cv2.imread("src.png")
gamma_plot(0.0000005, 4)
result = gamma(img, 0.0000005, 4)
cv2.imshow("src", img)
cv2.imshow("result", result)
if cv2.waitKey() == 27:
    cv2.destroyAllWindows()

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM