scan context與lego loam進行重定位與回環檢測


開貼記錄一下學習與應用scan context的經驗。(由於苦於尋找segmatch的odom,然后用loam做odom重定位效果並不是很理想,遂轉戰sacn context。)

一切不以應用為目的經驗貼都是耍流氓

1.應用

其應用比較簡單,只需在函數中加入

      SCManager scManager;//初始化
      auto 結果 = scManager.detectLoopClosureID();//返回兩個值
      scManager.makeAndSaveScancontextAndKeys(*點雲);//其中點雲為pcl::PointCloud<pcl::PointXYZI> & cloud_name
對於其兩個返回值有
      SCclosestHistoryFrameID = 結果.first;//第一個值是幀ID
      yawDiffRad = 結果.second; //第二個值是航向偏差 由序號得出將360度分為60份

2.源碼解析


float rad2deg(float radians)
float deg2rad(float degrees)
float xy2theta( const float & _x, const float & _y )// xy2theta
MatrixXd circshift( MatrixXd &_mat, int _num_shift )//將mat陣行右移得到新矩陣num shift
{
    // shift columns to right direction 將列右移
    assert(_num_shift >= 0);//如果表達式為FALSE (0), 程序將報告錯誤,並終止執行。如果表達式不為0,則繼續執行后面的語句
    if( _num_shift == 0 ) {
        MatrixXd shifted_mat( _mat );//預定義
        return shifted_mat; // Early return 
    }
    MatrixXd shifted_mat = MatrixXd::Zero( _mat.rows(), _mat.cols() );//初始化
    for ( int col_idx = 0; col_idx < _mat.cols(); col_idx++ ){
        int new_location = (col_idx + _num_shift) % _mat.cols();//行右移輸入量num shift
        shifted_mat.col(new_location) = _mat.col(col_idx);//shifted新矩陣賦值
    }
    return shifted_mat;
} // circshift

double SCManager::distDirectSC ( MatrixXd &_sc1, MatrixXd &_sc2 )
{
    int num_eff_cols = 0; // i.e., to exclude all-nonzero sector
    double sum_sector_similarity = 0;
    for ( int col_idx = 0; col_idx < _sc1.cols(); col_idx++ ){
        VectorXd col_sc1 = _sc1.col(col_idx);//預定義
        VectorXd col_sc2 = _sc2.col(col_idx);
        if( col_sc1.norm() == 0 | col_sc2.norm() == 0 )
            continue; // don't count this sector pair. 0,0的時候不計算
        double sector_similarity = col_sc1.dot(col_sc2) / (col_sc1.norm() * col_sc2.norm());//點積/叉積 = cos
        sum_sector_similarity = sum_sector_similarity + sector_similarity;//計算總的
        num_eff_cols = num_eff_cols + 1;
    }
    double sc_sim = sum_sector_similarity / num_eff_cols;
    return 1.0 - sc_sim;
} // distDirectSC
int SCManager::fastAlignUsingVkey( MatrixXd & _vkey1, MatrixXd & _vkey2)
{
    int argmin_vkey_shift = 0;
    double min_veky_diff_norm = 10000000;
    for ( int shift_idx = 0; shift_idx < _vkey1.cols(); shift_idx++ ){
        MatrixXd vkey2_shifted = circshift(_vkey2, shift_idx);//行變換
        MatrixXd vkey_diff = _vkey1 - vkey2_shifted;//減去shifted
        double cur_diff_norm = vkey_diff.norm();//歐幾里得長度 或 模
        if( cur_diff_norm < min_veky_diff_norm ){
            argmin_vkey_shift = shift_idx;          //第幾個
            min_veky_diff_norm = cur_diff_norm;     //更新最小值
        }
    }
    return argmin_vkey_shift;//返回第幾個
} // fastAlignUsingVkey
std::pair<double, int> SCManager::distanceBtnScanContext( MatrixXd &_sc1, MatrixXd &_sc2 )
{
    // 1. fast align using variant key (not in original IROS18)
    MatrixXd vkey_sc1 = makeSectorkeyFromScancontext( _sc1 );
    MatrixXd vkey_sc2 = makeSectorkeyFromScancontext( _sc2 );//返回一個值
    int argmin_vkey_shift = fastAlignUsingVkey( vkey_sc1, vkey_sc2 );//返回第幾個 由歐式距離
    const int SEARCH_RADIUS = round( 0.5 * SEARCH_RATIO * _sc1.cols() ); // a half of search range //設置搜索半徑
    std::vector<int> shift_idx_search_space { argmin_vkey_shift };
    for ( int ii = 1; ii < SEARCH_RADIUS + 1; ii++ ){
        shift_idx_search_space.push_back( (argmin_vkey_shift + ii + _sc1.cols()) % _sc1.cols() );   //把范圍內的加進去
        shift_idx_search_space.push_back( (argmin_vkey_shift - ii + _sc1.cols()) % _sc1.cols() );   
    }
    std::sort(shift_idx_search_space.begin(), shift_idx_search_space.end()); //排個序
    // 2. fast columnwise diff 
    int argmin_shift = 0;
    double min_sc_dist = 10000000;
    for ( int num_shift: shift_idx_search_space ){
        MatrixXd sc2_shifted = circshift(_sc2, num_shift); //行變換
        double cur_sc_dist = distDirectSC( _sc1, sc2_shifted ); //計算向量之類的
        if( cur_sc_dist < min_sc_dist ){
            argmin_shift = num_shift;
            min_sc_dist = cur_sc_dist;//更新
        }
    }
    return make_pair(min_sc_dist, argmin_shift);
} // distanceBtnScanContext
MatrixXd SCManager::makeScancontext( pcl::PointCloud<SCPointType> & _scan_down )
{
    TicToc t_making_desc;
    int num_pts_scan_down = _scan_down.points.size();//輸入點的數量
    // main
    const int NO_POINT = -1000;
    MatrixXd desc = NO_POINT * MatrixXd::Ones(PC_NUM_RING, PC_NUM_SECTOR);//預定義
    SCPointType pt;
    float azim_angle, azim_range; // wihtin 2d plane
    int ring_idx, sctor_idx;
    for (int pt_idx = 0; pt_idx < num_pts_scan_down; pt_idx++) {
        pt.x = _scan_down.points[pt_idx].x; 
        pt.y = _scan_down.points[pt_idx].y;
        pt.z = _scan_down.points[pt_idx].z + LIDAR_HEIGHT; // naive adding is ok (all points should be > 0).雷達自身高2.0米

        // xyz to ring, sector
        azim_range = sqrt(pt.x * pt.x + pt.y * pt.y);//半徑 
        azim_angle = xy2theta(pt.x, pt.y);  //方向角

        // if range is out of roi, pass
        if( azim_range > PC_MAX_RADIUS )//設置一個半徑的濾波
            continue;

        ring_idx = std::max( std::min( PC_NUM_RING, int(ceil( (azim_range / PC_MAX_RADIUS) * PC_NUM_RING )) ), 1 );//線號
        sctor_idx = std::max( std::min( PC_NUM_SECTOR, int(ceil( (azim_angle / 360.0) * PC_NUM_SECTOR )) ), 1 );//角度的扇號

        // taking maximum z 
        if ( desc(ring_idx-1, sctor_idx-1) < pt.z ) // -1 means cpp starts from 0
            desc(ring_idx-1, sctor_idx-1) = pt.z; // update for taking maximum value at that bin//更新Z最小值
    }

    // reset no points to zero (for cosine dist later)
    for ( int row_idx = 0; row_idx < desc.rows(); row_idx++ )
        for ( int col_idx = 0; col_idx < desc.cols(); col_idx++ )//行列
            if( desc(row_idx, col_idx) == NO_POINT )
                desc(row_idx, col_idx) = 0;//若沒有點則置0

    t_making_desc.toc("PolarContext making");

    return desc;
} // SCManager::makeScancontext


MatrixXd SCManager::makeRingkeyFromScancontext( Eigen::MatrixXd &_desc )
{
    /* 
     * summary: rowwise mean vector
    */
    Eigen::MatrixXd invariant_key(_desc.rows(), 1);//預定義
    for ( int row_idx = 0; row_idx < _desc.rows(); row_idx++ )
    {
        Eigen::MatrixXd curr_row = _desc.row(row_idx);
        invariant_key(row_idx, 0) = curr_row.mean();//均值 行 //16線
    }

    return invariant_key;
} // SCManager::makeRingkeyFromScancontext


MatrixXd SCManager::makeSectorkeyFromScancontext( Eigen::MatrixXd &_desc )
{
    //summary: columnwise mean vector
    Eigen::MatrixXd variant_key(1, _desc.cols());       //預定義
    for ( int col_idx = 0; col_idx < _desc.cols(); col_idx++ )
    {
        Eigen::MatrixXd curr_col = _desc.col(col_idx);//行
        variant_key(0, col_idx) = curr_col.mean(); //求均值 列 //360°
    }

    return variant_key;
} // SCManager::makeSectorkeyFromScancontext


void SCManager::makeAndSaveScancontextAndKeys( pcl::PointCloud<SCPointType> & _scan_down )
{
    Eigen::MatrixXd sc = makeScancontext(_scan_down); // v1 行列設置
    Eigen::MatrixXd ringkey = makeRingkeyFromScancontext( sc ); //返回第一個值
    Eigen::MatrixXd sectorkey = makeSectorkeyFromScancontext( sc ); //返回另一個值
    std::vector<float> polarcontext_invkey_vec = eig2stdvec( ringkey );//線號

    polarcontexts_.push_back( sc );
    polarcontext_invkeys_.push_back( ringkey );
    polarcontext_vkeys_.push_back( sectorkey );
    polarcontext_invkeys_mat_.push_back( polarcontext_invkey_vec );

    // cout <<polarcontext_vkeys_.size() << endl;

} // SCManager::makeAndSaveScancontextAndKeys


std::pair<int, float> SCManager::detectLoopClosureID ( void )
{
    int loop_id { -1 }; // init with -1, -1 means no loop (== LeGO-LOAM's variable "closestHistoryFrameID")

    auto curr_key = polarcontext_invkeys_mat_.back(); // current observation (query)線號
    auto curr_desc = polarcontexts_.back(); // current observation (query)//行列號

    /* 
     * step 1: candidates from ringkey tree_
     */
    if( polarcontext_invkeys_mat_.size() < NUM_EXCLUDE_RECENT + 1)//  線號size <51 從0到50 
    {
        std::pair<int, float> result {loop_id, 0.0}; //構造result
        return result; // Early return
    }

    // tree_ reconstruction (not mandatory to make everytime)
    if( tree_making_period_conter % TREE_MAKING_PERIOD_ == 0) // to save computation cost // %50
    {
        TicToc t_tree_construction;

        polarcontext_invkeys_to_search_.clear(); //
        polarcontext_invkeys_to_search_.assign( polarcontext_invkeys_mat_.begin(), polarcontext_invkeys_mat_.end() - NUM_EXCLUDE_RECENT ) ;//用於拷貝、賦值操作

        polarcontext_tree_.reset(); //智能指針 kdtree適應
        polarcontext_tree_ = std::make_unique<InvKeyTree>(PC_NUM_RING /* dim */, polarcontext_invkeys_to_search_, 10 /* max leaf */ );//賦值
        // tree_ptr_->index->buildIndex(); // inernally called in the constructor of InvKeyTree (for detail, refer the nanoflann and KDtreeVectorOfVectorsAdaptor)
        t_tree_construction.toc("Tree construction");
    }
    tree_making_period_conter = tree_making_period_conter + 1;
        
    double min_dist = 10000000; // init with somthing large
    int nn_align = 0;
    int nn_idx = 0;

    // knn search
    std::vector<size_t> candidate_indexes( NUM_CANDIDATES_FROM_TREE );
    std::vector<float> out_dists_sqr( NUM_CANDIDATES_FROM_TREE );

    TicToc t_tree_search;
    nanoflann::KNNResultSet<float> knnsearch_result( NUM_CANDIDATES_FROM_TREE ); //預定義
    knnsearch_result.init( &candidate_indexes[0], &out_dists_sqr[0] );//初始化
    polarcontext_tree_->index->findNeighbors( knnsearch_result, &curr_key[0] /* query */, nanoflann::SearchParams(10) ); 
    t_tree_search.toc("Tree search");

    /* 
     *  step 2: pairwise distance (find optimal columnwise best-fit using cosine distance)
     */
    TicToc t_calc_dist;   
    for ( int candidate_iter_idx = 0; candidate_iter_idx < NUM_CANDIDATES_FROM_TREE; candidate_iter_idx++ )
    {
        MatrixXd polarcontext_candidate = polarcontexts_[ candidate_indexes[candidate_iter_idx] ];//行列號
        std::pair<double, int> sc_dist_result = distanceBtnScanContext( curr_desc, polarcontext_candidate );//最小距離 和 序號
        
        double candidate_dist = sc_dist_result.first;
        int candidate_align = sc_dist_result.second;

        if( candidate_dist < min_dist )
        {
            min_dist = candidate_dist;
            nn_align = candidate_align;

            nn_idx = candidate_indexes[candidate_iter_idx];// 更新
        }
    }
    t_calc_dist.toc("Distance calc");
    /* 
     * loop threshold check
     */
    if( min_dist < SC_DIST_THRES )
    {
        loop_id = nn_idx; 
    
        // std::cout.precision(3); 
        cout << "[Loop found] Nearest distance: " << min_dist << " btn " << polarcontexts_.size()-1 << " and " << nn_idx << "." << endl;
        cout << "[Loop found] yaw diff: " << nn_align * PC_UNIT_SECTORANGLE << " deg." << endl;
    }
    else
    {
        std::cout.precision(3); 
        cout << "[Not loop] Nearest distance: " << min_dist << " btn " << polarcontexts_.size()-1 << " and " << nn_idx << "." << endl;
        cout << "[Not loop] yaw diff: " << nn_align * PC_UNIT_SECTORANGLE << " deg." << endl;
    }

    // To do: return also nn_align (i.e., yaw diff)
    float yaw_diff_rad = deg2rad(nn_align * PC_UNIT_SECTORANGLE);
    std::pair<int, float> result {loop_id, yaw_diff_rad};

    return result;

} // SCManager::detectLoopClosureID

// } // namespace SC2

3.應用開發

pcd文件需要分割然后進行scancontext特征的抽取
對PCD文件數據進行解析,希望找到跳變沿
4037 1442 712 4227 4437 6097 8724 14062在這些地方發生了20以上的跳變或者增減順序的跳變(-20增加到50 突然變成-20或者變為20),並無任何順序
后面准備在建圖時將scancontext信息保存下來,用來做后續的全局定位

后續准備用其做全局定位/重定位


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM