1.優化問題:
\(y=exp(ax^{2}+bx+c)+w\),由y和x,求解a,b,c
誤差為:\(e_{i}=y_{i}-exp(ax_{i}^{2}+bx_{i}+c)\)
誤差項對每一個待估計量進行求導:
\(\frac{\partial e_{i}}{\partial a}=-x^{2}_{i}exp(ax^{2}_{i}+bx_{i}+c)\)
\(\frac{\partial e_{i}}{\partial b}=-x_{i}exp(ax^{2}_{i}+bx_{i}+c)\)
\(\frac{\partial e_{i}}{\partial c}=-exp(ax^{2}_{i}+bx_{i}+c)\)
雅可比矩陣\(J_{i}=[\frac{\partial e_{i}}{\partial a},\frac{\partial e_{i}}{\partial b},\frac{\partial e_{i}}{\partial c}]^{T}\),
高斯的增量方程為: \((\displaystyle \sum^{100}_{i=1} J_{i}(\sigma^{2})^{-1} J_{i}^{T})\Delta x_{k}=\displaystyle \sum^{100}_{i=1} -J_{i}(\sigma^{2})^{-1} e_{i}\)
\(H\Delta x_{k}=b\)
噪聲滿足 w ~ ( 0,\(\sigma^{2}\) )
#include <iostream>
#include <chrono>
#include <opencv2/opencv.hpp>
#include <Eigen/Core>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
int main(int argc, char **argv) {
double ar = 1.0, br = 2.0, cr = 1.0; //真實參考值
double ae = 20.0, be = -10.0, ce = 10.0; //初始值,不能太大,初始化很重要
int N = 100; //數據總點數
double w_sigma = 1.0; //噪聲sigma值
double inv_sigma = 1.0 / w_sigma;
cv::RNG rng; // opencv隨機數產生
vector<double> x_data, y_data; //數據,生成真值數據加上隨機數模擬實際采樣值
for(int i=0; i<N; i++){
double x = i / 100.0;
x_data.push_back(x);
y_data.push_back( exp(ar*x*x + br*x + cr) + rng.gaussian(w_sigma*w_sigma) );
}
int iterations = 100; //迭代次數
double cost = 0, lastCost= 0; //每次迭代的誤差平方和,用於判斷退出迭代次數
chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
for ( int iter=0; iter<iterations; iter++ ){
Matrix3d H = Matrix3d::Zero();
Vector3d b = Vector3d::Zero();
cost = 0;
for(int i=0; i<N; i++){
double xi = x_data[i], yi = y_data[i];
double error = yi - exp( ae*xi*xi + be*xi + ce );
Vector3d J; //雅克比矩陣
J[0] = -xi * xi * exp(ae * xi * xi + be * xi + ce); // de/da
J[1] = -xi * exp(ae * xi * xi + be * xi + ce); // de/db
J[2] = -exp(ae * xi * xi + be * xi + ce); // de/dc
H += inv_sigma * inv_sigma * J * J.transpose();
b += -inv_sigma * inv_sigma * error * J;
cost += error * error;
}
//求解線性方程 Hx = b
Vector3d dx = H.ldlt().solve(b);
if (isnan(dx[0])) {
cout << "result is nan!" << endl;
break;
}
if (iter > 0 && cost >= lastCost) { //誤差變大,找到最小值,退出迭代
cout << "cost: " << cost << ">= last cost: " << lastCost << ", break." << endl;
break;
}
ae += dx[0];
be += dx[1];
ce += dx[2];
lastCost = cost;
cout << "total cost: " << cost << ", \t\tupdate: " << dx.transpose() <<
"\t\testimated params: " << ae << "," << be << "," << ce << endl;
}
chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
cout << "solve time cost = " << time_used.count() << " seconds. " << endl;
cout << "estimated abc = " << ae << ", " << be << ", " << ce << endl;
return 0;
}
CMakelists.txt:
cmake_minimum_required(VERSION 2.8)
project(gaussnewton)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11")
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})
include_directories("/usr/include/eigen3")
set(SOURCE_FILES main.cpp)
add_executable(gaussnewton ${SOURCE_FILES})
target_link_libraries(gaussnewton ${OpenCV_LIBS})