1.簡介
帶有相機位姿和空間點的圖優化稱為BA,能夠有效的求解大范圍的定位與建圖問題,但是隨着時間,規模越來越大,計算效率會大幅下降。我們發現,特征點在優化問題中占了很大部分,經過若干次迭代之后,特征點就會收斂,此時再進行優化的意義並不大,因此,在優化幾次后,可以把特征點固定住,把他們看做位姿估計的約束,不再優化他們的位姿。
位姿圖即只考慮位姿,構建一個只有軌跡的圖優化,而位姿節點之間的邊,由兩個關鍵幀之間通過特征匹配后得到的運動估計來給定初始值,一旦初始值完成,就不再優化路標點的位置,只關心相機位姿之間的聯系。
2.位姿優化:
圖優化中的節點表示相機位姿,以\(\xi_{1}, ..., \xi_{n}\)來表示。邊,則是兩個位姿節點之間的相對運動估計。
\(\xi_{i}\)和\(\xi_{j}\)之間的一個運動\(\Delta \xi_{ij}\)。
按李群寫法:
構建誤差\(e_{ij}\):
注意優化變量有兩個:\(\xi_{i}\)和\(\xi_{j}\),因此求\(e_{ij}\)關於這兩個變量的導數,按照李代數的求導方式,給兩個優化變量各一個左擾動,於是誤差變為:
把擾動項移至式子的左側或右側,有:
因此,按照李代數上的求導法則,我們求出來誤差關於兩個位姿的雅可比矩陣。
關於Ti的:
關於Tj的:
由於雅可比矩陣Jr形式過於復雜,我們通常取它的近似。如果誤差接近於零,我們設它近似於I或:
得到雅可比矩陣后,剩下的部分就和普通的圖優化一樣了,所有的位姿頂點和位姿邊構成了一個圖優化,本質上是一個最小二乘問題,優化變量為各個頂點的位姿,邊來自於位姿觀測約束。則總體的目標函數為:
3.實踐
++ g2o自帶的數據類型,默認使用四元數和平移向量表達位姿。
頂點:\(ID, t_{x}, t_{y}, t_{z}, q_{x}, q_{y}, q_{z}, q_{w}\)。前面為平移向量,后面為旋轉的單位四元數。
邊:\(兩個節點的ID, t_{x}, t_{y}, t_{z}, q_{x}, q_{y}, q_{z}, q_{w}\),信息矩陣的右上角
(信息矩陣為對稱矩陣,只保留一半即可)。
#include <iostream>
#include <fstream>
#include <string>
#include <g2o/types/slam3d/types_slam3d.h>
#include <g2o/core/block_solver.h>
#include <g2o/core/optimization_algorithm_levenberg.h>
#include <g2o/solvers/eigen/linear_solver_eigen.h>
using namespace std;
int main(int argc, char **argv) {
if (argc != 2) {
cout << "Usage: pose_graph_g2o_SE3 sphere.g2o" << endl;
return 1;
}
ifstream fin(argv[1]);
if (!fin) {
cout << "file " << argv[1] << " does not exist." << endl;
return 1;
}
// 設定g2o
typedef g2o::BlockSolver<g2o::BlockSolverTraits<6, 6>> BlockSolverType;
typedef g2o::LinearSolverEigen<BlockSolverType::PoseMatrixType> LinearSolverType;
auto solver = new g2o::OptimizationAlgorithmLevenberg(
g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));
g2o::SparseOptimizer optimizer; // 圖模型
optimizer.setAlgorithm(solver); // 設置求解器
optimizer.setVerbose(true); // 打開調試輸出
int vertexCnt = 0, edgeCnt = 0; // 頂點和邊的數量
while (!fin.eof()) {
string name;
fin >> name;
if (name == "VERTEX_SE3:QUAT") {
// SE3 頂點
g2o::VertexSE3 *v = new g2o::VertexSE3();
int index = 0;
fin >> index;
v->setId(index);
v->read(fin);
optimizer.addVertex(v);
vertexCnt++;
if (index == 0)
v->setFixed(true);
} else if (name == "EDGE_SE3:QUAT") {
// SE3-SE3 邊
g2o::EdgeSE3 *e = new g2o::EdgeSE3();
int idx1, idx2; // 關聯的兩個頂點
fin >> idx1 >> idx2;
e->setId(edgeCnt++);
e->setVertex(0, optimizer.vertices()[idx1]);
e->setVertex(1, optimizer.vertices()[idx2]);
e->read(fin);
optimizer.addEdge(e);
}
if (!fin.good()) break;
}
cout << "read total " << vertexCnt << " vertices, " << edgeCnt << " edges." << endl;
cout << "optimizing ..." << endl;
optimizer.initializeOptimization();
optimizer.optimize(30);
cout << "saving optimization results ..." << endl;
optimizer.save("result.g2o");
return 0;
}
++ 自定義李代數數據類型
#include <iostream>
#include <fstream>
#include <string>
#include <Eigen/Core>
#include <g2o/core/base_vertex.h>
#include <g2o/core/base_binary_edge.h>
#include <g2o/core/block_solver.h>
#include <g2o/core/optimization_algorithm_levenberg.h>
#include <g2o/solvers/eigen/linear_solver_eigen.h>
#include <sophus/se3.hpp>
using namespace std;
using namespace Eigen;
using Sophus::SE3d;
using Sophus::SO3d;
typedef Matrix<double, 6, 6> Matrix6d;
// 給定誤差求J_R^{-1}的近似
Matrix6d JRInv(const SE3d &e) {
Matrix6d J;
J.block(0, 0, 3, 3) = SO3d::hat(e.so3().log());
J.block(0, 3, 3, 3) = SO3d::hat(e.translation());
J.block(3, 0, 3, 3) = Matrix3d::Zero(3, 3);
J.block(3, 3, 3, 3) = SO3d::hat(e.so3().log());
// J = J * 0.5 + Matrix6d::Identity();
J = Matrix6d::Identity(); // try Identity if you want
return J;
}
// 李代數頂點
typedef Matrix<double, 6, 1> Vector6d;
class VertexSE3LieAlgebra : public g2o::BaseVertex<6, SE3d> {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
virtual bool read(istream &is) override {
double data[7];
for (int i = 0; i < 7; i++)
is >> data[i];
setEstimate(SE3d(
Quaterniond(data[6], data[3], data[4], data[5]),
Vector3d(data[0], data[1], data[2])
));
}
virtual bool write(ostream &os) const override {
os << id() << " ";
Quaterniond q = _estimate.unit_quaternion();
os << _estimate.translation().transpose() << " ";
os << q.coeffs()[0] << " " << q.coeffs()[1] << " " << q.coeffs()[2] << " " << q.coeffs()[3] << endl;
return true;
}
virtual void setToOriginImpl() override {
_estimate = SE3d();
}
// 左乘更新
virtual void oplusImpl(const double *update) override {
Vector6d upd;
upd << update[0], update[1], update[2], update[3], update[4], update[5];
_estimate = SE3d::exp(upd) * _estimate;
}
};
// 兩個李代數節點之邊
class EdgeSE3LieAlgebra : public g2o::BaseBinaryEdge<6, SE3d, VertexSE3LieAlgebra, VertexSE3LieAlgebra> {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
virtual bool read(istream &is) override {
double data[7];
for (int i = 0; i < 7; i++)
is >> data[i];
Quaterniond q(data[6], data[3], data[4], data[5]);
q.normalize();
setMeasurement(SE3d(q, Vector3d(data[0], data[1], data[2])));
for (int i = 0; i < information().rows() && is.good(); i++)
for (int j = i; j < information().cols() && is.good(); j++) {
is >> information()(i, j);
if (i != j)
information()(j, i) = information()(i, j);
}
return true;
}
virtual bool write(ostream &os) const override {
VertexSE3LieAlgebra *v1 = static_cast<VertexSE3LieAlgebra *> (_vertices[0]);
VertexSE3LieAlgebra *v2 = static_cast<VertexSE3LieAlgebra *> (_vertices[1]);
os << v1->id() << " " << v2->id() << " ";
SE3d m = _measurement;
Eigen::Quaterniond q = m.unit_quaternion();
os << m.translation().transpose() << " ";
os << q.coeffs()[0] << " " << q.coeffs()[1] << " " << q.coeffs()[2] << " " << q.coeffs()[3] << " ";
// information matrix
for (int i = 0; i < information().rows(); i++)
for (int j = i; j < information().cols(); j++) {
os << information()(i, j) << " ";
}
os << endl;
return true;
}
// 誤差計算與書中推導一致
virtual void computeError() override {
SE3d v1 = (static_cast<VertexSE3LieAlgebra *> (_vertices[0]))->estimate();
SE3d v2 = (static_cast<VertexSE3LieAlgebra *> (_vertices[1]))->estimate();
_error = (_measurement.inverse() * v1.inverse() * v2).log();
}
// 雅可比計算
virtual void linearizeOplus() override {
SE3d v1 = (static_cast<VertexSE3LieAlgebra *> (_vertices[0]))->estimate();
SE3d v2 = (static_cast<VertexSE3LieAlgebra *> (_vertices[1]))->estimate();
Matrix6d J = JRInv(SE3d::exp(_error));
// 嘗試把J近似為I?
_jacobianOplusXi = -J * v2.inverse().Adj();
_jacobianOplusXj = J * v2.inverse().Adj();
}
};
int main(int argc, char **argv) {
if (argc != 2) {
cout << "Usage: pose_graph_g2o_SE3_lie sphere.g2o" << endl;
return 1;
}
ifstream fin(argv[1]);
if (!fin) {
cout << "file " << argv[1] << " does not exist." << endl;
return 1;
}
// 設定g2o
typedef g2o::BlockSolver<g2o::BlockSolverTraits<6, 6>> BlockSolverType;
typedef g2o::LinearSolverEigen<BlockSolverType::PoseMatrixType> LinearSolverType;
auto solver = new g2o::OptimizationAlgorithmLevenberg(
g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));
g2o::SparseOptimizer optimizer; // 圖模型
optimizer.setAlgorithm(solver); // 設置求解器
optimizer.setVerbose(true); // 打開調試輸出
int vertexCnt = 0, edgeCnt = 0; // 頂點和邊的數量
vector<VertexSE3LieAlgebra *> vectices;
vector<EdgeSE3LieAlgebra *> edges;
while (!fin.eof()) {
string name;
fin >> name;
if (name == "VERTEX_SE3:QUAT") {
// 頂點
VertexSE3LieAlgebra *v = new VertexSE3LieAlgebra();
int index = 0;
fin >> index;
v->setId(index);
v->read(fin);
optimizer.addVertex(v);
vertexCnt++;
vectices.push_back(v);
if (index == 0)
v->setFixed(true);
} else if (name == "EDGE_SE3:QUAT") {
// SE3-SE3 邊
EdgeSE3LieAlgebra *e = new EdgeSE3LieAlgebra();
int idx1, idx2; // 關聯的兩個頂點
fin >> idx1 >> idx2;
e->setId(edgeCnt++);
e->setVertex(0, optimizer.vertices()[idx1]);
e->setVertex(1, optimizer.vertices()[idx2]);
e->read(fin);
optimizer.addEdge(e);
edges.push_back(e);
}
if (!fin.good()) break;
}
cout << "read total " << vertexCnt << " vertices, " << edgeCnt << " edges." << endl;
cout << "optimizing ..." << endl;
optimizer.initializeOptimization();
optimizer.optimize(30);
cout << "saving optimization results ..." << endl;
// 因為用了自定義頂點且沒有向g2o注冊,這里保存自己來實現
// 偽裝成 SE3 頂點和邊,讓 g2o_viewer 可以認出
ofstream fout("result_lie.g2o");
for (VertexSE3LieAlgebra *v:vectices) {
fout << "VERTEX_SE3:QUAT ";
v->write(fout);
}
for (EdgeSE3LieAlgebra *e:edges) {
fout << "EDGE_SE3:QUAT ";
e->write(fout);
}
fout.close();
return 0;
}
CMakeLists.txt
cmake_minimum_required(VERSION 2.8)
project(pose_graph)
set(CMAKE_BUILD_TYPE "Release")
set(CMAKE_CXX_FLAGS "-std=c++11 -O2")
list(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake_modules)
# Eigen
include_directories("/usr/include/eigen3")
# sophus
find_package(Sophus REQUIRED)
include_directories(${Sophus_INCLUDE_DIRS})
# g2o
find_package(G2O REQUIRED)
include_directories(${G2O_INCLUDE_DIRS})
add_executable(pose_graph_g2o_SE3 pose_graph_g2o_SE3.cpp)
target_link_libraries(pose_graph_g2o_SE3
g2o_core g2o_stuff g2o_types_slam3d ${CHOLMOD_LIBRARIES}
)
add_executable(pose_graph_g2o_lie pose_graph_g2o_lie_algebra.cpp)
target_link_libraries(pose_graph_g2o_lie
g2o_core g2o_stuff
${CHOLMOD_LIBRARIES}
${Sophus_LIBRARIES}
)