如何免費使用Google的GPU跑深度學習代碼


作者:凌逆戰

博客地址:https:////www.cnblogs.com/LXP-Never/p/11614053.html


  從事深度學習的研究者都知道,深度學習代碼需要設計海量的數據,需要很大很大很大(重要的事情說三遍)的計算量,以至於CPU算不過來,需要通過GPU幫忙,但這必不意味着CPU的性能沒GPU強,CPU是那種綜合性的,GPU是專門用來做圖像渲染的,這我們大家都知道,做圖像矩陣的計算GPU更加在行,應該我們一般把深度學習程序讓GPU來計算,事實也證明GPU的計算速度比CPU塊,但是(但是前面的話都是廢話)我們窮,買不起呀,一塊1080Ti現在也要3500左右,2080Ti要9000左右,具體價格還要看顯存大小,因此本文給大家帶來了福利——Google免費的GPU Colaboratory。

Google Colab簡介

  Google Colaboratory是谷歌開放的一款研究工具,主要用於機器學習的開發研究,這款工具現在可以免費使用,但是不是永久免費暫時還不確定,Google Colab最大的好處是給廣大開發AI者提供免費的GPU使用!GPU型號是Tesla K80,你可以在上面輕松地跑例如:Keras、Tensorflow、Pytorch等框架。

  Colabortory是一個jupyter notebook環境,它支持python2和python3,還包括TPU和GPU加速,該軟件與Google雲盤硬盤集成,用戶可以輕松共享項目或將其他共享項目復制到自己的帳戶中。

Colaboratory使用步驟

1、登錄谷歌雲盤

https://drive.google.com/drive/my-drive(沒有賬號的可以注冊一個)

(1)、右鍵新建文件夾,作為我們的項目文件夾。

2、創建Colab文件

右鍵在更多里面選擇google Colaboratry(如果沒有Colaboratory需要在關聯更多應用里面關聯Colaboratory)

3、開始使用

這時候會直接跳轉到Colaboratory界面,這個界面很像Jupyter Notebook,Jupyter的命令在Colaboratory一樣適用,值得一提的是,Colab不僅可以運行Python代碼,只要在命令前面加一個"  !",這條命令就變成了linux命令,比如我們可以" ! ls"查看文件夾文件,還可以!pip安裝庫。以及運行py程序!python2 temp.py

可以寫一段代碼進行測試

更改工作目錄,在Colab中cd命令是無效的,切換工作目錄使用chdir函數

復制代碼
!pwd # 用 pwd 命令顯示工作路徑
# /content
!ls # 查看的是 content 文件夾下有哪些文件
# sample_data
!ls "drive/My Drive"
# TensorFlow (這就是我們之前創建的那個文件夾)

# 更改工作目錄
import os
os.chdir("/content/drive/My Drive/TensorFlow")
os.getcwd()
# '/content/drive/My Drive/TensorFlow'
復制代碼

重新啟動Colab命令:!kill -9 -1

(3)、選擇配置環境

  我們大家肯定會疑慮,上述方法跑的那段程序是不是用GPU跑的呢?不是,想要用GPU跑程序我們還需要配置環境,

  點擊工具欄“修改”,選擇筆記本設置

在運行時類型我們可以選擇Python 2或Python 3,硬件加速器我們可以選擇GPU或者TPU(后面會講到),或者None什么都不用。

加載數據

從本地加載數據

從本地上傳數據

files.upload 會返回已上傳文件的字典。 此字典的鍵為文件名,值為已上傳的數據。

復制代碼
from google.colab import files

uploaded = files.upload()
for fn in uploaded.keys():
  print('用戶上傳的文件 "{name}" 有 {length} bytes'.format(
      name=fn, length=len(uploaded[fn])))
復制代碼

我們運行該段程序之后,就會讓我們選擇本地文件,點擊上傳后,該文件就能被讀取了

將文件下載到本地

from google.colab import files

files.download('./example.txt')        # 下載文件

從谷歌雲盤加載數據

使用授權代碼在運行時裝載 Google 雲端硬盤

from google.colab import drive
drive.mount('/content/gdrive')

在Colab中運行上述代碼,會出現一段鏈接,點擊鏈接,復制鏈接中的密鑰,輸入到Colab中就可以成功把Colab與谷歌雲盤相連接,連接后進行路徑切換,就可以直接讀取谷歌雲盤數據了。

向Google Colab添加表單

為了不每次都在代碼中更改超參數,您可以簡單地將表單添加到Google Colab。

點擊之后就會出現左右兩個框,我們在左框中輸入

復制代碼
# @title 字符串

text = 'value' #@param {type:"string"}
dropdown = '1st option' #@param ["1st option", "2nd option", "3rd option"]
text_and_dropdown = 'value' #@param ["選項1", "選項2", "選項3"] {allow-input: true}

print(text)
print(dropdown)
print(text_and_dropdown)
復制代碼

雙擊右邊欄可以隱藏代碼

Colab中的GPU

首先我們要讓Colab連上GPU,導航欄-->編輯-->筆記本設置-->選擇GPU

接下來我們來確認可以使用Tensorflow連接到GPU

復制代碼
import tensorflow as tf

device_name = tf.test.gpu_device_name()
if device_name != '/device:GPU:0':
  raise SystemError('沒有發現GPU device')
print('Found GPU at: {}'.format(device_name))
# Found GPU at: /device:GPU:0
復制代碼

我們可以在Colab上運行以下代碼測試GPU和CPU的速度

import tensorflow as tf
import timeit

config = tf.ConfigProto()
config.gpu_options.allow_growth = True

with tf.device('/cpu:0'):
  random_image_cpu = tf.random_normal((100, 100, 100, 3))
  net_cpu = tf.layers.conv2d(random_image_cpu, 32, 7)
  net_cpu = tf.reduce_sum(net_cpu)

with tf.device('/device:GPU:0'):
  random_image_gpu = tf.random_normal((100, 100, 100, 3))
  net_gpu = tf.layers.conv2d(random_image_gpu, 32, 7)
  net_gpu = tf.reduce_sum(net_gpu)

sess = tf.Session(config=config)

# 確保TF可以檢測到GPU
try:
  sess.run(tf.global_variables_initializer())
except tf.errors.InvalidArgumentError:
  print(
      '\n\n此錯誤很可能表示此筆記本未配置為使用GPU。 '
      '通過命令面板(CMD/CTRL-SHIFT-P)或編輯菜單在筆記本設置中更改此設置.\n\n')
  raise

def cpu():
  sess.run(net_cpu)
  
def gpu():
  sess.run(net_gpu)
  
# 運行一次進行測試
cpu()
gpu()

# 多次運行op
print('將100*100*100*3通過濾波器卷積到32*7*7*3(批處理x高度x寬度x通道)大小的圖像'
    '計算10次運訓時間的總和')
print('CPU (s):')
cpu_time = timeit.timeit('cpu()', number=10, setup="from __main__ import cpu")
print(cpu_time)
print('GPU (s):')
gpu_time = timeit.timeit('gpu()', number=10, setup="from __main__ import gpu")
print(gpu_time)
print('GPU加速超過CPU: {}倍'.format(int(cpu_time/gpu_time)))

sess.close()
# CPU (s):
# 3.593296914000007
# GPU (s):
# 0.1831514239999592
# GPU加速超過CPU: 19倍
View Code

Colab中的TPU

首先我們要讓Colab連上GPU,導航欄-->編輯-->筆記本設置-->選擇TPU

接下來我們來確認可以使用Tensorflow連接到TPU

復制代碼
import os
import pprint
import tensorflow as tf

if 'COLAB_TPU_ADDR' not in os.environ:
  print('您沒有連接到TPU,請完成上述操作')
else:
  tpu_address = 'grpc://' + os.environ['COLAB_TPU_ADDR']
  print ('TPU address is', tpu_address)     
  # TPU address is grpc://10.97.206.146:8470

  with tf.Session(tpu_address) as session:
    devices = session.list_devices()
    
  print('TPU devices:')
  pprint.pprint(devices)
復制代碼

使用TPU進行簡單運算

復制代碼
import numpy as np

def add_op(x, y):
  return x + y
  
x = tf.placeholder(tf.float32, [10,])
y = tf.placeholder(tf.float32, [10,])
tpu_ops = tf.contrib.tpu.rewrite(add_op, [x, y])
  
session = tf.Session(tpu_address)
try:
  print('Initializing...')
  session.run(tf.contrib.tpu.initialize_system())
  print('Running ops')
  print(session.run(tpu_ops, {x: np.arange(10), y: np.arange(10)}))
  # [array([ 0.,  2.,  4.,  6.,  8., 10., 12., 14., 16., 18.], dtype=float32)]
finally:
  # 目前,tpu會話必須與關閉會話分開關閉。
  session.run(tf.contrib.tpu.shutdown_system())
  session.close()
復制代碼

在Colab中運行Tensorboard

想要在Google Colab中運行Tensorboard,請運行以下代碼

復制代碼
!wget https://bin.equinox.io/c/4VmDzA7iaHb/ngrok-stable-linux-amd64.zip
!unzip ngrok-stable-linux-amd64.zip

# 添加TensorBoard的路徑
import os
log_dir = 'tb_logs'
if not os.path.exists(log_dir):
  os.makedirs(log_dir)

# 開啟ngrok service,綁定port 6006(tensorboard)
get_ipython().system_raw('tensorboard --logdir {} --host 0.0.0.0 --port 6006 &'.format(log_dir))
get_ipython().system_raw('./ngrok http 6006 &')

# 產生網站,點擊網站訪問tensorboard
!curl -s http://localhost:4040/api/tunnels | python3 -c \
    "import sys, json; print(json.load(sys.stdin)['tunnels'][0]['public_url'])"
復制代碼

您可以使用創建的ngrok.io URL 跟蹤Tensorboard日志。您將在輸出末尾找到URL。請注意,您的Tensorboard日志將保存到tb_logs目錄。當然,您可以更改目錄名稱。

之后,我們可以看到Tensorboard發揮作用!運行以下代碼后,您可以通過ngrok URL跟蹤Tensorboard日志。

from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
from keras.callbacks import TensorBoard

batch_size = 128
num_classes = 10
epochs = 12

# input image dimensions
img_rows, img_cols = 28, 28

# the data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()

if K.image_data_format() == 'channels_first':
    x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
    x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
    input_shape = (1, img_rows, img_cols)
else:
    x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
    x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
    input_shape = (img_rows, img_cols, 1)

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
                 activation='relu',
                 input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

model.compile(loss=keras.losses.categorical_crossentropy,
              optimizer=keras.optimizers.Adadelta(),
              metrics=['accuracy'])


tbCallBack = TensorBoard(log_dir=LOG_DIR, 
                         histogram_freq=1,
                         write_graph=True,
                         write_grads=True,
                         batch_size=batch_size,
                         write_images=True)

model.fit(x_train, y_train,
          batch_size=batch_size,
          epochs=epochs,
          verbose=1,
          validation_data=(x_test, y_test),
          callbacks=[tbCallBack])
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
View Code

參考

Colaboratory官方文檔

一位外國小哥寫的博客,總結的不錯

作者:凌逆戰
歡迎任何形式的轉載,但請務必注明出處。
限於本人水平,如果文章和代碼有表述不當之處,還請不吝賜教。
本文章不做任何商業用途,僅作為自學所用,文章后面會有參考鏈接,我可能會復制原作者的話,如果介意,我會修改或者刪除。

 

 

出處:https://www.cnblogs.com/LXP-Never/p/11614053.html


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM