等價無窮小、常用泰勒展開式、常用導數、三角函數基礎


等價無窮小

可直接等價替換的類型:

變上限積分函數(積分變限函數)也可以用等價無窮小進行替換。

 

 

 

 

 

泰勒展開式的重要性體現在以下五個方面:

1、冪級數的求導和積分可以逐項進行,因此求和函數相對比較容易。

2、一個解析函數可e799bee5baa631333431343633被延伸為一個定義在復平面上的一個開片上的解析函數,並使得復分析這種手法可行。

3、泰勒級數可以用來近似計算函數的值,並估計誤差。

4、證明不等式。

5、求待定式的極限。

常用泰勒展開公式如下:

1、e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+……

2、ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1)

3、sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。(-∞<x<∞)

4、cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+…… (-∞<x<∞)

5、arcsin x = x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + ……(|x|<1)

6、arccos x = π - ( x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + …… ) (|x|<1)

7、sinh x = x+x^3/3!+x^5/5!+……+(-1)^(k-1)*(x^2k-1)/(2k-1)!+…… (-∞<x<∞)

 

 

 

 

 

 

 

 

總結:人類的本質是復讀機,多看多學。

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM