可直接等價替換的類型:
變上限積分函數(積分變限函數)也可以用等價無窮小進行替換。
泰勒展開式的重要性體現在以下五個方面:
1、冪級數的求導和積分可以逐項進行,因此求和函數相對比較容易。
2、一個解析函數可
3、泰勒級數可以用來近似計算函數的值,並估計誤差。
4、證明不等式。
5、求待定式的極限。
常用泰勒展開公式如下:
1、e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+……
2、ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1)
3、sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。(-∞<x<∞)
4、cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+…… (-∞<x<∞)
5、arcsin x = x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + ……(|x|<1)
6、arccos x = π - ( x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + …… ) (|x|<1)
7、sinh x = x+x^3/3!+x^5/5!+……+(-1)^(k-1)*(x^2k-1)/(2k-1)!+…… (-∞<x<∞)
總結:人類的本質是復讀機,多看多學。