pearson相關系數:用於判斷數據是否線性相關的方法。
注意:不線性相關並不代表不相關,因為可能是非線性相關。
Python計算pearson相關系數:
1. 使用numpy計算(corrcoef),以下是先標准化再求相關系數
import numpy as np import pandas as pd aa = np.array([2,3,9,6,8]) bb = np.array([5,6,3,7,9]) cc = np.array([aa, bb]) print(cc) cc_mean = np.mean(cc, axis=0) #axis=0,表示按列求均值 ——— 即第一維 cc_std = np.std(cc, axis=0) cc_zscore = (cc-cc_mean)/cc_std #標准化 cc_zscore_corr = np.corrcoef(cc_zscore) #相關系數矩陣 print(cc_zscore_corr)
其中:
def corrcoef(x, y=None, rowvar=True, bias=np._NoValue, ddof=np._NoValue): """ Return Pearson product-moment correlation coefficients. Please refer to the documentation for `cov` for more detail. The relationship between the correlation coefficient matrix, `R`, and the covariance matrix, `C`, is .. math:: R_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} * C_{jj} } } The values of `R` are between -1 and 1, inclusive. Parameters ---------- x : array_like A 1-D or 2-D array containing multiple variables and observations. Each row of `x` represents a variable, and each column a single observation of all those variables. Also see `rowvar` below.
2. 使用pandas計算相關系數
cc_pd = pd.DataFrame(cc_zscore.T, columns=['c1', 'c2']) cc_corr = cc_pd.corr(method='spearman') #相關系數矩陣
其中,method中,有三種相關系數的計算方式,包括 —— 'pearson', 'kendall', 'spearman',常用的是線性相關pearson。
Parameters ---------- method : {'pearson', 'kendall', 'spearman'} * pearson : standard correlation coefficient * kendall : Kendall Tau correlation coefficient * spearman : Spearman rank correlation
cc_corr 值可用於獲取:某個因子與其他因子的相關系數:
print(cc_corr['c1']) #某個因子與其他因子的相關系數
附:pandas計算協方差
print(cc_pd.c1.cov(cc_pd.c2)) #協方差 print(cc_pd.c1.corr(cc_pd.c2)) #兩個因子的相關系數 y_cov = cc_pd.cov() #協方差矩陣
3. 可直接計算,因為pearson相關系數的計算公式為:
cov(X,Y)表示的是協方差
var(x)和var(y)表示的是方差
##
參考:
https://www.jianshu.com/p/c83dd487df09
https://blog.csdn.net/liuchengzimozigreat/article/details/82989224