目標
- 背景分離(BS)是一種通過使用靜態相機來生成前景掩碼(即包含屬於場景中的移動對象像素的二進制圖像)的常用技術。
- 顧名思義,BS計算前景掩碼,在當前幀與背景模型之間執行減法運算,其中包含場景的靜態部分,或者更一般而言,考慮到所觀察場景的特征,可以將其視為背景的所有內容。

背景建模包括兩個主要步驟:
- 背景初始化;
- 背景更新。
第一步,計算背景的初始模型,而在第二步中,更新模型以適應場景中可能的變化。
在本教程中,我們將學習如何使用OpenCV中的BS。
目標
在本教程中,您將學習如何:
- 使用cv::VideoCapture從視頻或圖像序列中讀取數據;
- 通過使用cv::BackgroundSubtractor類創建和更新背景類;
- 通過使用cv::imshow獲取並顯示前景蒙版;
代碼
在下面,您可以找到源代碼。我們將讓用戶選擇處理視頻文件或圖像序列。在此示例中,我們將使用cv::BackgroundSubtractorMOG2生成前景掩碼。
結果和輸入數據將顯示在屏幕上。
from __future__ import print_function
import cv2 as cv
import argparse
parser = argparse.ArgumentParser(description='This program shows how to use background subtraction methods provided by \
OpenCV. You can process both videos and images.')
parser.add_argument('--input', type=str, help='Path to a video or a sequence of image.', default='vtest.avi')
parser.add_argument('--algo', type=str, help='Background subtraction method (KNN, MOG2).', default='MOG2')
args = parser.parse_args()
if args.algo == 'MOG2':
backSub = cv.createBackgroundSubtractorMOG2()
else:
backSub = cv.createBackgroundSubtractorKNN()
capture = cv.VideoCapture(cv.samples.findFileOrKeep(args.input))
if not capture.isOpened:
print('Unable to open: ' + args.input)
exit(0)
while True:
ret, frame = capture.read()
if frame is None:
break
fgMask = backSub.apply(frame)
cv.rectangle(frame, (10, 2), (100,20), (255,255,255), -1)
cv.putText(frame, str(capture.get(cv.CAP_PROP_POS_FRAMES)), (15, 15),
cv.FONT_HERSHEY_SIMPLEX, 0.5 , (0,0,0))
cv.imshow('Frame', frame)
cv.imshow('FG Mask', fgMask)
keyboard = cv.waitKey(30)
if keyboard == 'q' or keyboard == 27:
break
解釋
我們討論上面代碼的主要部分:
- 一個cv::BackgroundSubtractor對象將用於生成前景掩碼。在此示例中,使用了默認參數,但是也可以在create函數中聲明特定的參數。
#創建背景分離對象
if args.algo == 'MOG2':
backSub = cv.createBackgroundSubtractorMOG2()
else:
backSub = cv.createBackgroundSubtractorKNN()
- 一個cv::VideoCapture對象用於讀取輸入視頻或輸入圖像序列。
capture = cv.VideoCapture(cv.samples.findFileOrKeep(args.input))
if not capture.isOpened:
print('Unable to open: ' + args.input)
exit(0)
- 每幀都用於計算前景掩碼和更新背景。如果要更改用於更新背景模型的學習率,可以通過將參數傳遞給apply方法來設置特定的學習率。
#更新背景模型
fgMask = backSub.apply(frame)
- 當前幀號可以從cv::VideoCapture對象中提取,並標記在當前幀的左上角。白色矩形用於突出顯示黑色的幀編號。
#獲取幀號並將其寫入當前幀
cv.rectangle(frame, (10, 2), (100,20), (255,255,255), -1)
cv.putText(frame, str(capture.get(cv.CAP_PROP_POS_FRAMES)), (15, 15),
cv.FONT_HERSHEY_SIMPLEX, 0.5 , (0,0,0))
- 我們准備顯示當前的輸入框和結果。
#展示當前幀和背景掩碼
cv.imshow('Frame', frame)
cv.imshow('FG Mask', fgMask)
結果
- 對於
vtest.avi視頻,適用以下框架:
[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-Rx1IwTUF-1582955843365)(http://qiniu.aihubs.net/Background_Subtraction_Tutorial_frame.jpg)]
MOG2方法的程序輸出如下所示(檢測到灰色區域有陰影):

對於KNN方法,程序的輸出將如下所示(檢測到灰色區域的陰影):
[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-l48ymOfC-1582955843366)(http://qiniu.aihubs.net/Background_Subtraction_Tutorial_result_KNN.jpg)]
參考
- Background Models Challenge (BMC) website
- A Benchmark Dataset for Foreground/Background Extraction
歡迎關注磐創博客資源匯總站:
http://docs.panchuang.net/
歡迎關注PyTorch官方中文教程站:
http://pytorch.panchuang.net/
OpenCV中文官方文檔:
http://woshicver.com/
