如果本文對您有幫助,請幫忙點贊、評論、收藏,感謝!
python 為例
一. 函數原型
dst=cv.resize(src, dsize[, dst[, fx[, fy[, interpolation]]]])
參數含義:
src:input image.
dst:output image; it has the size dsize (when it is non-zero) or the size computed from src.size(), fx, and fy; the type of dst is the same as of src.
dsize:output image size; if it equals zero, it is computed as:
dsize = Size(round(fx*src.cols), round(fy*src.rows))
Either dsize or both fx and fy must be non-zero.
fx :scale factor along the horizontal axis; when it equals 0, it is computed as
(double)dsize.width/src.cols
fy :scale factor along the vertical axis; when it equals 0, it is computed as
(double)dsize.height/src.rows
interpolation:interpolation method, see InterpolationFlags

二. 實驗代碼:
1 import cv2 2 import numpy as np 3 4 # 讀入灰度圖像 5 im_path='../paojie_g.jpg' 6 img = cv2.imread(im_path,0) 7 # 注意應該先寫寬度img.shape[1]*2,再寫高度img.shape[0]*2 8 NN_interpolation = cv2.resize(img,(img.shape[1]*2,img.shape[0]*2),interpolation=cv2.INTER_NEAREST) 9 BiLinear_interpolation = cv2.resize(img,(img.shape[1]*2,img.shape[0]*2),interpolation=cv2.INTER_LINEAR) 10 BiCubic_interpolation = cv2.resize(img,(img.shape[1]*2,img.shape[0]*2),interpolation=cv2.INTER_CUBIC) 11 12 cv2.imshow('NN_interpolation',NN_interpolation) 13 cv2.imwrite('NN_interpolation.jpg',NN_interpolation) 14 cv2.imshow('BiLinear_interpolation',BiLinear_interpolation) 15 cv2.imwrite('BiLinear_interpolation.jpg',BiLinear_interpolation) 16 cv2.imshow('BiCubic_interpolation',BiCubic_interpolation) 17 cv2.imwrite('BiCubic_interpolation.jpg',BiCubic_interpolation) 18 cv2.waitKey(0) 19 cv2.destroyAllWindows()
三. 實驗結果:




可以看到,最近鄰插值算法放大圖像后,目標圖像邊緣出現了明顯的鋸齒;而雙線性和雙三次插值算法沒有出現明顯的鋸齒邊緣。
四. 參考內容: