車道線檢測LaneNet


LaneNet

  • LanNet 
    • Segmentation branch 完成語義分割,即判斷出像素屬於車道or背景
    • Embedding branch 完成像素的向量表示,用於后續聚類,以完成實例分割
  • H-Net

Segmentation branch

解決樣本分布不均衡   

車道線像素遠小於背景像素.loss函數的設計對不同像素賦給不同權重,降低背景權重.

該分支的輸出為(w,h,2).

Embedding branch

loss的設計思路為使得屬於同一條車道線的像素距離盡量小,屬於不同車道線的像素距離盡可能大.即Discriminative loss.

該分支的輸出為(w,h,n).n為表示像素的向量的維度.

實例分割

在Segmentation branch完成語義分割,Embedding branch完成像素的向量表示后,做聚類,完成實例分割.

H-net

透視變換

to do

車道線擬合

LaneNet的輸出是每條車道線的像素集合,還需要根據這些像素點回歸出一條車道線。傳統的做法是將圖片投影到鳥瞰圖中,然后使用二次或三次多項式進行擬合。在這種方法中,轉換矩陣H只被計算一次,所有的圖片使用的是相同的轉換矩陣,這會導致坡度變化下的誤差。
為了解決這個問題,論文訓練了一個可以預測變換矩陣H的神經網絡HNet,網絡的輸入是圖片,輸出是轉置矩陣H。之前移植過Opencv逆透視變換矩陣的源碼,里面轉換矩陣需要8個參數,這兒只給了6個參數的自由度,一開始有些疑惑,后來仔細閱讀paper,發現作者已經給出了解釋,是為了對轉換矩陣在水平方向上的變換進行約束。

代碼分析

        binary_seg_image, instance_seg_image = sess.run(
            [binary_seg_ret, instance_seg_ret],
            feed_dict={input_tensor: [image]}
        )

輸入(1,256,512,3) 輸出binary_seg_image:(1, 256, 512) instance_seg_image:(1, 256, 512, 4)

完成像素級別的分類和向量表示

class LaneNet的inference分為兩步.  
第一步提取分割的特征,包括了用於語義分割的特征和用以實例分割的特征.

class LaneNet(cnn_basenet.CNNBaseModel):
    def inference(self, input_tensor, name):
        """

        :param input_tensor:
        :param name:
        :return:
        """
        with tf.variable_scope(name_or_scope=name, reuse=self._reuse):
            # first extract image features
            extract_feats_result = self._frontend.build_model(
                input_tensor=input_tensor,
                name='{:s}_frontend'.format(self._net_flag),
                reuse=self._reuse
            )
            #得到一個字典,包含了用於語義分割的feature map和用於實例分割的feature map.
            #binary_segment_logits (1,256,512,2) 2是類別數目.即車道/背景.
            #instance_segment_logits (1,256,512,64) 用以后面再做卷積為每個像素生成一個向量表示
            print('features:',extract_feats_result)

            # second apply backend process
            binary_seg_prediction, instance_seg_prediction = self._backend.inference(
                binary_seg_logits=extract_feats_result['binary_segment_logits']['data'],
                instance_seg_logits=extract_feats_result['instance_segment_logits']['data'],
                name='{:s}_backend'.format(self._net_flag),
                reuse=self._reuse
            )

            if not self._reuse:
                self._reuse = True

        return binary_seg_prediction, instance_seg_prediction

第一步得到的features如下:

features : OrderedDict([('encode_stage_1_share', {'data': <tf.Tensor 'lanenet_model/vgg_frontend/vgg16_encode_module/conv1_2/relu:0' shape=(1, 256, 512, 64) dtype=float32>, 'shape': [1, 256, 512, 64]}), ('encode_stage_2_share', {'data': <tf.Tensor 'lanenet_model/vgg_frontend/vgg16_encode_module/conv2_2/relu:0' shape=(1, 128, 256, 128) dtype=float32>, 'shape': [1, 128, 256, 128]}), ('encode_stage_3_share', {'data': <tf.Tensor 'lanenet_model/vgg_frontend/vgg16_encode_module/conv3_3/relu:0' shape=(1, 64, 128, 256) dtype=float32>, 'shape': [1, 64, 128, 256]}), ('encode_stage_4_share', {'data': <tf.Tensor 'lanenet_model/vgg_frontend/vgg16_encode_module/conv4_3/relu:0' shape=(1, 32, 64, 512) dtype=float32>, 'shape': [1, 32, 64, 512]}), ('encode_stage_5_binary', {'data': <tf.Tensor 'lanenet_model/vgg_frontend/vgg16_encode_module/conv5_3_binary/relu:0' shape=(1, 16, 32, 512) dtype=float32>, 'shape': [1, 16, 32, 512]}), ('encode_stage_5_instance', {'data': <tf.Tensor 'lanenet_model/vgg_frontend/vgg16_encode_module/conv5_3_instance/relu:0' shape=(1, 16, 32, 512) dtype=float32>, 'shape': [1, 16, 32, 512]}), ('binary_segment_logits', {'data': <tf.Tensor 'lanenet_model/vgg_frontend/vgg16_decode_module/binary_seg_decode/binary_final_logits/binary_final_logits:0' shape=(1, 256, 512, 2) dtype=float32>, 'shape': [1, 256, 512, 2]}), ('instance_segment_logits', {'data': <tf.Tensor 'lanenet_model/vgg_frontend/vgg16_decode_module/instance_seg_decode/decode_stage_1_fuse/fuse_feats:0' shape=(1, 256, 512, 64) dtype=float32>, 'shape': [1, 256, 512, 64]})])

特征提取完畢,做后處理

class LaneNetBackEnd(cnn_basenet.CNNBaseModel):
        def inference(self, binary_seg_logits, instance_seg_logits, name, reuse):
            """

            :param binary_seg_logits:
            :param instance_seg_logits:
            :param name:
            :param reuse:
            :return:
            """
            with tf.variable_scope(name_or_scope=name, reuse=reuse):

                with tf.variable_scope(name_or_scope='binary_seg'):
                    binary_seg_score = tf.nn.softmax(logits=binary_seg_logits)
                    binary_seg_prediction = tf.argmax(binary_seg_score, axis=-1)

                with tf.variable_scope(name_or_scope='instance_seg'):

                    pix_bn = self.layerbn(
                        inputdata=instance_seg_logits, is_training=self._is_training, name='pix_bn')
                    pix_relu = self.relu(inputdata=pix_bn, name='pix_relu')
                    instance_seg_prediction = self.conv2d(
                        inputdata=pix_relu,
                        out_channel=CFG.TRAIN.EMBEDDING_FEATS_DIMS,
                        kernel_size=1,
                        use_bias=False,
                        name='pix_embedding_conv'
                    )

            return binary_seg_prediction, instance_seg_prediction

對每個像素的分類,做softmax轉成概率.再argmax求概率較大值的下標.  對每個像素的向量表示,用1x1卷積核做卷積,得到channel維度=CFG.TRAIN.EMBEDDING_FEATS_DIMS(配置為4).即(1,256,512,64)卷積得到(1,256,512,4)的tensor.即每個像素用一個四維向量表示.

所以,整個LaneNet的inference返回的是兩個tensor.一個shape為(1,256,512) 一個為(1,256,512,4).

后處理

class LaneNetPostProcessor(object):
    def postprocess(self, binary_seg_result, instance_seg_result=None,
                min_area_threshold=100, source_image=None,
                data_source='tusimple'):

對binary_seg_result,先通過形態學操作將小的空洞去除.參考https://www.cnblogs.com/sdu20112013/p/11672634.html
然后做聚類.

    def _get_lane_embedding_feats(binary_seg_ret, instance_seg_ret):
        """
        get lane embedding features according the binary seg result
        :param binary_seg_ret:
        :param instance_seg_ret:
        :return:
        """
        idx = np.where(binary_seg_ret == 255) #idx (b,h,w)
        lane_embedding_feats = instance_seg_ret[idx]
        
        # idx_scale = np.vstack((idx[0] / 256.0, idx[1] / 512.0)).transpose()
        # lane_embedding_feats = np.hstack((lane_embedding_feats, idx_scale))
        lane_coordinate = np.vstack((idx[1], idx[0])).transpose()

        assert lane_embedding_feats.shape[0] == lane_coordinate.shape[0]

        ret = {
            'lane_embedding_feats': lane_embedding_feats,
            'lane_coordinates': lane_coordinate
        }

        return ret

獲取到坐標及對應坐標像素對應的向量表示.

np.where(condition)
只有條件 (condition),沒有x和y,則輸出滿足條件 (即非0) 元素的坐標 (等價於numpy.nonzero)。這里的坐標以tuple的形式給出,通常原數組有多少維,輸出的tuple中就包含幾個數組,分別對應符合條件元素的各維坐標。

測試結果

tensorflow-gpu 1.15.2
4張titan xp

(4, 256, 512) (4, 256, 512, 4)
I0302 17:04:31.276140 29376 test_lanenet.py:222] imgae inference cost time: 2.58794s

(32, 256, 512) (32, 256, 512, 4)
I0302 17:05:50.322593 29632 test_lanenet.py:222] imgae inference cost time: 4.31036s

類似於高吞吐量,高延遲.對單幀圖片處理在1-2s,多幅圖片同時處理,平均下來的處理速度在0.1s.

論文里的backbone為enet,在nvida 1080 ti上推理速度52fps.

對於這個問題的解釋,作者的解釋是

2.Origin paper use Enet as backbone net but I use vgg16 as backbone net so speed will not get as fast as that. 3.Gpu need a short time to warm up and you can adjust your batch size to test the speed again:)
一個是特征提取網絡和論文里不一致,一個是gpu有一個短暫的warm up的時間.

我自己的測試結果是在extract image features耗時較多.換一個backbone可能會有改善.

   def inference(self, input_tensor, name):
        """

        :param input_tensor:
        :param name:
        :return:
        """
        print("***************,input_tensor shape:",input_tensor.shape)
        with tf.variable_scope(name_or_scope=name, reuse=self._reuse):
            t_start = time.time()
            # first extract image features
            extract_feats_result = self._frontend.build_model(
                input_tensor=input_tensor,
                name='{:s}_frontend'.format(self._net_flag),
                reuse=self._reuse
            )
            t_cost = time.time() - t_start
            glog.info('extract image features cost time: {:.5f}s'.format(t_cost))

            # second apply backend process
            t_start = time.time()
            binary_seg_prediction, instance_seg_prediction = self._backend.inference(
                binary_seg_logits=extract_feats_result['binary_segment_logits']['data'],
                instance_seg_logits=extract_feats_result['instance_segment_logits']['data'],
                name='{:s}_backend'.format(self._net_flag),
                reuse=self._reuse
            )
            t_cost = time.time() - t_start
            glog.info('backend process cost time: {:.5f}s'.format(t_cost))

            if not self._reuse:
                self._reuse = True

        return binary_seg_prediction, instance_seg_prediction

參考:https://www.cnblogs.com/xuanyuyt/p/11523192.html  https://zhuanlan.zhihu.com/p/93572094


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM