點雲配准(Registration)算法——以PCL為例


本文為PCL官方教程的Registration模塊的中文簡介版。

 

An Overview of Pairwise Registration


 

點雲配准包括以下步驟:

  • from a set of points, identify interest points (i.e., keypoints) that best represent the scene in both datasets;
  • at each keypoint, compute a feature descriptor;
  • from the set of feature descriptors together with their XYZ positions in the two datasets, estimate a set of correspondences, based on the similarities between features and positions;
  • given that the data is assumed to be noisy, not all correspondences are valid, so reject those bad correspondences that contribute negatively to the registration process;
  • from the remaining set of good correspondences, estimate a motion transformation.

 

針對上述每一個步驟,PCL的registration模塊提供了多種算法進行實現 。

Keypoint

諸如 NARF, SIFT and FAST。

 

Feature descriptors

諸如NARF, FPFH, BRIEF or SIFT。

 

Correspondences Estimation

point matching

  • brute force matching,

  • kd-tree nearest neighbor search (FLANN),

  • searching in the image space of organized data, and

  • searching in the index space of organized data.

feature matching

  • brute force matching and

  • kd-tree nearest neighbor search (FLANN).

 

Corresdondences Rejection

使用RANSAC,或者剪出多余數據。

 

Transformation Estimation

諸如 SVD for motion estimate; - Levenberg-Marquardt with different kernels for motion estimate。

 

算法案例

其中(1)和(2)是point matching,(3)是feature matching。

(1)ICP

ICP的使用SVD求解轉換矩陣,其參考文章:

Least-Squares Estimation of Transformation Parameters Between Two Point Patterns

 

(2)NDT

參考論文:

1. The Three-Dimensional Normal-Distributions Transform an Efficient Representation for Registration, Surface Analysis, and Loop Detection. MARTIN MAGNUSSON doctoral dissertation。

2. Line Search Algorithm with Guaranteed Sufficient Decrease. 計算迭代步長。

 

(3)改進版RANSAC

參考論文:

Pose Estimation using Local Structure-Specific Shape and Appearance Context. ICRA 2013.

 

相關資料:

https://stackoverflow.com/questions/30559556/point-cloud-library-robust-registration-of-two-point-clouds


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM