本文為PCL官方教程的Registration模塊的中文簡介版。
An Overview of Pairwise Registration
點雲配准包括以下步驟:
- from a set of points, identify interest points (i.e., keypoints) that best represent the scene in both datasets;
- at each keypoint, compute a feature descriptor;
- from the set of feature descriptors together with their XYZ positions in the two datasets, estimate a set of correspondences, based on the similarities between features and positions;
- given that the data is assumed to be noisy, not all correspondences are valid, so reject those bad correspondences that contribute negatively to the registration process;
- from the remaining set of good correspondences, estimate a motion transformation.
針對上述每一個步驟,PCL的registration模塊提供了多種算法進行實現 。
Keypoint
諸如 NARF, SIFT and FAST。
Feature descriptors
諸如NARF, FPFH, BRIEF or SIFT。
Correspondences Estimation
point matching
-
brute force matching,
-
kd-tree nearest neighbor search (FLANN),
-
searching in the image space of organized data, and
-
searching in the index space of organized data.
feature matching
-
brute force matching and
-
kd-tree nearest neighbor search (FLANN).
Corresdondences Rejection
使用RANSAC,或者剪出多余數據。
Transformation Estimation
諸如 SVD for motion estimate; - Levenberg-Marquardt with different kernels for motion estimate。
算法案例
其中(1)和(2)是point matching,(3)是feature matching。
(1)ICP
ICP的使用SVD求解轉換矩陣,其參考文章:
Least-Squares Estimation of Transformation Parameters Between Two Point Patterns
(2)NDT
參考論文:
1. The Three-Dimensional Normal-Distributions Transform an Efficient Representation for Registration, Surface Analysis, and Loop Detection. MARTIN MAGNUSSON doctoral dissertation。
2. Line Search Algorithm with Guaranteed Sufficient Decrease. 計算迭代步長。
(3)改進版RANSAC
參考論文:
Pose Estimation using Local Structure-Specific Shape and Appearance Context. ICRA 2013.
相關資料:

