3D Registration 三維點雲配准 —— 基本概念和ICP算法的C++實現


未完

 

待讀參考:

https://blog.csdn.net/kaspar1992/article/details/54836222

https://www.cnblogs.com/yin52133/archive/2012/07/21/2602562.html

https://blog.csdn.net/u011600592/article/details/70258097

https://blog.csdn.net/Ha_ku/article/details/79755623

https://www.cnblogs.com/21207-iHome/p/6038853.html

https://www.cnblogs.com/sddai/p/6129437.html

論文:方法比較 [Rusinkiewicz et Levoy, 2001], [GRUEN et AKCA, 2005]  et [AKCA, 2007]

 

課堂筆記:

RANSAC算法(RANdom SAmple Consensus隨機抽樣一致)

 

ICP算法(Iterative Closest Point迭代最近點)

目的: estimate transform between two dense sets of points

步驟:

1. Assign each point in {Set 1} to its nearest neighbor in {Set 2}
2. Estimate transformation parameters – e.g., least squares or robust least squares
3. Transform the points in {Set 1} using estimated parameters
4. Repeat steps 1-3 until change is very small

可行的預處理:去除離散的噪點。

 

 

擴展:PCL雲點集


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM