一、求證:\(\sin\alpha\cos\beta=\dfrac{1}{2}[\sin(\alpha+\beta)+\sin(\alpha-\beta)]\)
證明:因為$$\sin(\alpha+\beta)=\sin\alpha\cos\beta+\cos\alpha\sin\beta$$$$\sin(\alpha-\beta)=\sin\alpha\cos\beta-\cos\alpha\sin\beta$$將以上兩式的左右兩邊分別相加,得$$\sin(\alpha+\beta)+\sin(\alpha-\beta)=2\sin\alpha\cos\beta$$即$$\sin\alpha\cos\beta=\dfrac{1}{2}[\sin(\alpha+\beta)+\sin(\alpha-\beta)]$$同理得到$$\cos\alpha\sin\beta=\dfrac{1}{2}[\sin(\alpha+\beta)-\sin(\alpha-\beta)]$$$$\cos\alpha\cos\beta=\dfrac{1}{2}[\cos(\alpha+\beta)+\cos(\alpha-\beta)]$$$$\sin\alpha\sin\beta=-\dfrac{1}{2}[\cos(\alpha+\beta)-\cos(\alpha-\beta)]$$由於公式的左邊為積的形式,右邊為和或差的形式,故把上述四個公式稱為 積化和差 公式.
\(\quad\)
二、求證:\(\sin\theta+\sin\varphi=2\sin\dfrac{\theta+\varphi}{2}\cos\dfrac{\theta-\varphi}{2}\)
證明:由上一題的證明有$$\sin(\alpha+\beta)+\sin(\alpha-\beta)=2\sin\alpha\cos\beta$$設 \(\alpha+\beta=\theta,\alpha-\beta=\varphi\) .那么$$\alpha=\dfrac{\theta+\varphi}{2},\beta=\dfrac{\theta-\varphi}{2}$$把 \(\alpha,\beta\) 的值代入上式,即得$$\sin\theta+\sin\varphi=2\sin\dfrac{\theta+\varphi}{2}\cos\dfrac{\theta-\varphi}{2}$$同理得$$\sin\theta-\sin\varphi=2\cos\dfrac{\theta+\varphi}{2}\sin\dfrac{\theta-\varphi}{2}$$$$\cos\theta+\cos\varphi=2\cos\dfrac{\theta+\varphi}{2}\cos\dfrac{\theta-\varphi}{2}$$$$\cos\theta-\cos\varphi=-2\sin\dfrac{\theta+\varphi}{2}\sin\dfrac{\theta-\varphi}{2}$$我們把上述四個公式稱為和差化積公式.
例題
\(1\)、已知 \(\sin(\alpha+\beta)=\dfrac{1}{2},\sin(\alpha-\beta)=\dfrac{1}{3}\) ,求 \(\sin\alpha\cos\beta\) .
解析:\(\sin\alpha\cos\beta=\dfrac{1}{2}[\sin(\alpha+\beta)+\sin(\alpha-\beta)]=\dfrac{5}{12}\)
\(2\)、設 \(A,B,C\) 是 \(\triangle ABC\) 的三個內角,求證:
證明:
練習
已知 \(A+B+C=\pi\) ,求證:
\((1)\;\sin A+\sin B+\sin C=4\cos\dfrac{A}{2}\cos\dfrac{B}{2}\cos\dfrac{C}{2}\)
\((2)\;\cos A+\cos B+\cos C=1+4\sin\dfrac{A}{2}\sin\dfrac{B}{2}\sin\dfrac{C}{2}\)