Matlab計算兩個信號的互能量


1. 設\(x_{1}(t)=sinc(10t),x_{2}(t)=rect(10t),x_{3}(t)=x_{1}(t)+x_{2}(t)\),利用Matlab求\(x_{1}(t),x_{2}(t),x_{3}(t)\)之間的互能量

rect=@(x)(abs(x)<=0.5);

T=10;
dt=1e-4; 

t=[-T/2:dt:T/2];

x1=sinc(10*t);
x2=rect(10*t);
x3=x1+x2;

E12=sum(x1.*x2*dt);
E13=sum(x1.*x3*dt);
E23=sum(x2.*x3*dt);

disp([E12;E13;E23])

2. 設\(x_1(t)=cos(100\pi\,t),x_2(t)=cos(100\pi\,t+1-sin(2\pi\,t)),x_3(t)=x_1(t)+x_2(t)\),利用Matlab仿真求\(x_1(t),x_2(t),x_3(t)\)之間的互功率。

T=10;
dt=1e-4;

t=[-T/2:dt:T/2];

x1=cos(100*pi*t);
x2=cos(100*pi*t+10*sin(2*pi*t));
x3=x1+x2;

P12=mean(x1.*x2);
P13=mean(x1.*x3);
P23=mean(x2.*x3);

disp([P12;P13;P23])

3. 例2的復信號情況

rect =@(x) (abs(x)<=0.5)
T=20;
dt=0.0001;
t=[-T/2:dt:T/2];
x=sinc(10*t).*exp(1i*200*pi*t);
y=rect(10*t).*exp(1i*200*pi*t-1i*pi/3);
Ex=sum(x*x')*dt
Ey=sum(y*y')*dt
Exy=sum(x*y')*dt
abs(Exy)
sqrt(Ex*Ey)

內積

內積的數學定義:

\[<x(t),y(t)>=\int_{-\infty}^{+\infty}x(t)y^{*}(t)\,dt \]

特別地,對於實信號\(x^{*}(t)=x(t)\),

\[<x(t),y(t)>=\int_{-\infty}^{+\infty}x(t)y(t)\,dt \]

正交

內積為0稱為正交

\[<x(t),y(t)>=0 \]

傅立葉變換

傅立葉變換就是信號與\(e^{j2\pi\,ft}\)的內積:

\[<x(t),e^{j2\pi\,ft}>=\int_{-infty}^{+infty}x(t)e^{-j2\pi\,ft}\,dt \]

注:頻域內積等於時域內積(重要性質),即

\[<x(t),y(t)>=<X(f),Y(f)> \]

也就是,

\[\int_{-\infty}^{+\infty}x(t)y(t)\,dt=\int_{-\infty}^{+\infty}X(f)Y(f)\,df \]

特別地,

\[\int_{-\infty}^{+\infty}x^{2}(t)\,dt=\int_{-\infty}^{+\infty}X^{2}(f)\,df \]

也就是,能量既可以在時域上算,也可以在頻域上算

能量

\[E=<s(t),s(t)>=\int_{-\infty}^{+\infty}|s(t)|^{2}\,dt \]

即能量就是信號對自己作內積

互能量

\[E_{xy}=<x(t),y(t)> \]

\[E_{yx}=<y(t),x(t)> \]

信號之和的能量

\[E_{x+y}=\int_{-\infty}^{+\infty}|x(t)+y(t)|^2,dt=\int_{-\infty}^{+\infty}|x(t)|^2+|y(t)|^2+x(t)y^{*}(t)+y(t)x^{*}(t)\,dt=E_x+E_y+E_{xy}+E_{yx} \]

設x_1(t)=sinc(10t),x_2(t)=rect(10t),x_3(t)=x_1(t)+x_2(t),利用Matlab求x_1(t),x_2(t),x_3(t)之間的互能量


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM