第六章:用利率期貨對沖
思維導圖
轉換因子釋疑
轉換因子是特定假設下可交割券全價與標准券全價的比值,用該比值近似真實情況下可交割券全價與標准券全價的比例關系。
標准券有 6% 的票息率,每半年付息一次,發行日為期貨合約到期月份的首個交割日。若發行日期限結構保持水平,利率為 6%,則標准券全價是 $100,可交割券(到期月份要向下取整到 0 月)全價是,
\[\frac{c \times 100}{2} \left(\frac{1}{0.03} - \frac{1}{0.03(1+0.03)^{2n}} \right) + \frac{100}{0.03(1+0.03)^{2n}} \]
轉換因子等於,
\[CF_0 = \frac{c}{2} \left(\frac{1}{0.03} - \frac{1}{0.03(1+0.03)^{2n}} \right) + \frac{1}{0.03(1+0.03)^{2n}} \]
其他情況類似。
因此,國債期貨的機制可以理解為:以標准券為基准,為所有可交割券估價。若期貨合約價格 \(FP\),CTD 的轉換因子是 \(CF\),那么交割時多頭相當於用凈價 \(FP \times CF\) 購買了 CTD。
利率期貨久期向量的推導
Eurodollar 期貨的久期向量
未來 \(s\) 年的 \(t\) 年期遠期利率 \(f(s, s+t)\) 和瞬時遠期利率 \(f(s)\) 之間存在關系:
\[f(s,s+t)t = \int_{s}^{s+t}f(x)dx\\ \Delta f(s,s+t)t = \int_{s}^{s+t}\Delta f(x)dx \]
(連續復利)期貨利率 \(f^*\) 和遠期利率 \(f\) 之間存在“凸性修正”關系:
\[f(s,s+t) = f^*(s,s+t) - \frac{1}{2} \sigma^2 s(s+t) \]
所以
\[\Delta f(s,s+t) = \Delta f^*(s,s+t) \]
已知:
\[CP = 1000000[1-(100-Q)/400]\\ q=100-Q\\ \]
那么
\[\Delta CP = -2500 \times \Delta q \]
如果(連續復利)期貨利率由 \(f^*(s,s+90/365)\) 變為 \(f^{* \prime}(s,s+90/365)\)(記 \(\Delta f^{*} = f^{* \prime} - f^{*}\)),那么
\[\begin{aligned} \Delta q &=q^{\prime} - q\\ &= (e^{f^{* \prime}(s,s+90/365) \times(90/365)} - e^{f^{*}(s,s+90/365)\times(90/365)})\times 400\\ &=e^{f^{*}(s,s+90/365)\times(90/365)}(e^{\Delta f^{*}(s,s+90/365)\times(90/365)} - 1)\times 400\\ \end{aligned} \]
根據 \(e^x - 1 \approx x\),
\[\begin{aligned} \Delta CP &= -2500 \times \Delta q\\ &=-1000000\times e^{f^{*}(s,s+90/365)\times(90/365)}(e^{\Delta f^{*}(s,s+90/365)\times(90/365)} - 1)\\ &\approx -1000000\times e^{f^{*}(s,s+90/365)\times(90/365)} \Delta f^{*}(s,s+90/365)\times(90/365)\\ &=-1000000\times ((100-Q)/400+1)\Delta f^{*}(s,s+90/365)\times(90/365)\\ \end{aligned} \]
如果:
\[\Delta y(t) = \Delta A_0 + \Delta A_1 t + \Delta A_2 t^2 + \Delta A_3 t^3 + \cdots\\ \Delta f(t) = \Delta A_0 + 2\Delta A_1 t + 3\Delta A_2 t^2 + 4\Delta A_3 t^3 + \cdots \]
那么
\[\begin{aligned} &\Delta f^{*}(s,s+90/365)\times(90/365) \\ &= \Delta f(s,s+90/365)\times(90/365)\\ &=\int_{s}^{s+90/365} \Delta f(t)dt\\ &=\int_{s}^{s+90/365} \Delta A_0 + 2\Delta A_1 t + 3\Delta A_2 t^2 + 4\Delta A_3 t^3 + \cdots dx\\ &=\Delta A_0(90/365) + \Delta A_1\left[(s+90/365)^2-s^2 \right] + \Delta A_2\left[(s+90/365)^3-s^3 \right] + \Delta A_3\left[(s+90/365)^4-s^4 \right] + \cdots \end{aligned} \]
最終
\[\frac{\Delta CP}{CP} = -D^f(1)\times \Delta A_0 -D^f(2)\times \Delta A_1 -D^f(3)\times \Delta A_2 + \cdots\\ \begin{aligned} D^f(1) &= K(Q)\times(90/365)\\ D^f(2) &= K(Q)\times[(s+90/365)^2-s^2]\\ D^f(3) &= K(Q)\times[(s+90/365)^3-s^3]\\ \end{aligned} \\ K(Q)=\left(1+\frac{100-Q}{400} \right) / \left(1-\frac{100-Q}{400} \right)=\frac{500-Q}{300+Q} \]
國債期貨的久期向量
記:
- \(T\) = CTD 的剩余期限
- \(C\) = CTD 的票息現金流(非年化)
- \(F\) = CTD 的面額
- \(CF\) = CTD 的轉換因子
- \(CP\) = CTD 的全價
- \(\tau\) = 期貨到期日與期貨到期后債券首個付息日之間的距離
- \(s\) = 期貨到期日
- \(n\) = 截止到期貨到期日發生的付息次數
- \(y(t)\):瞬時即期期限結構
- 默認付息兩次(美式規則)
那么,國債期貨的價格是:
\[\begin{aligned} FP &=\frac{1}{CF} (CP - AI)\\ &= \frac{1}{CF} \left( \sum_{t=0}^{2(T-s-\tau)}\frac{C}{e^{(s +\tau + t\times 0.5)\times y(s +\tau + t\times 0.5)}} + \frac{F}{e^{T\times y(T)}} \right)e^{s \times y(s)} - \frac{C}{CF}\times \frac{0.5-\tau}{0.5} \end{aligned} \]
如果 \(y\) 變化到 \(y^{\prime}\)(記 \(\Delta y = y^{\prime}-y\)),那么
\[\begin{aligned} \Delta FP &= FP^{\prime} - FP\\ &= \frac{1}{CF} \left( \sum_{t=0}^{2(T-s-\tau)}\frac{C}{e^{(s +\tau + t\times 0.5)\times y^{\prime}(s +\tau + t\times 0.5)}} + \frac{F}{e^{T\times y^{\prime}(T)}} \right)e^{s \times y^{\prime}(s)} \\ &\ \ \ \ -\frac{1}{CF} \left( \sum_{t=0}^{2(T-s-\tau)}\frac{C}{e^{(s +\tau + t\times 0.5)\times y(s +\tau + t\times 0.5)}} + \frac{F}{e^{T\times y(T)}} \right)e^{s \times y(s)}\\ &=\frac{1}{CF}\left( \sum_{t=0}^{2(T-s-\tau)}\frac{C}{e^{(s +\tau + t\times 0.5)\times y(s +\tau + t\times 0.5)}}\left(e^{s\times \Delta y(s) - (s +\tau + t\times 0.5)\times\Delta y(s +\tau + t\times 0.5)} -1\right) + \frac{F}{e^{T\times y(T)}}\left(e^{s\times \Delta y(s) - T\times\Delta y(T)} -1\right) \right)e^{s \times y(s)} \end{aligned} \]
根據 \(e^x - 1 \approx x\),
\[\begin{aligned} \Delta FP &\approx \\ &\frac{1}{CF} \sum_{t=0}^{2(T-s-\tau)}\frac{C e^{s \times y(s)}}{e^{(s +\tau + t\times 0.5)\times y(s +\tau + t\times 0.5)}} [{s\times \Delta y(s) - (s +\tau + t\times 0.5)\times\Delta y(s +\tau + t\times 0.5)} ] \\ &+ \frac{F e^{s \times y(s)}}{{T\times y(T)}}\left[{s\times \Delta y(s) - T\times\Delta y(T)} \right] \end{aligned} \]
如果:
\[\Delta y(t) = \Delta A_0 + \Delta A_1 t + \Delta A_2 t^2 + \Delta A_3 t^3 + \cdots \]
那么
\[\begin{aligned} &\Delta FP \approx \\ &\frac{1}{CF} \sum_{t=0}^{2(T-s-\tau)}\frac{C e^{s \times y(s)}}{e^{(s +\tau + t\times 0.5)\times y(s +\tau + t\times 0.5)}} \times\\ &\left\{{s\times (\Delta A_0 + \Delta A_1 s + \Delta A_2 s^2 + \Delta A_3 s^3 +\cdots) - (s +\tau + t\times 0.5)\times \left[\Delta A_0 + \Delta A_1 (s +\tau + t\times 0.5) + \Delta A_2 (s +\tau + t\times 0.5)^2 + \Delta A_3 (s +\tau + t\times 0.5)^3 +\cdots \right]} \right\} \\ &+\frac{F e^{s \times y(s)}}{{T\times y(T)}}\left[s\times (\Delta A_0 + \Delta A_1 s + \Delta A_2 s^2 + \Delta A_3 s^3+\cdots) - T\times (\Delta A_0 + \Delta A_1 T + \Delta A_2 T^2 + \Delta A_3 T^3+\cdots) \right] \end{aligned} \]
最終
\[\begin{aligned} \frac{\Delta FP}{FP} &\approx -D(1)\times \Delta A_0 -D(2)\times \Delta A_1 -D(3)\times \Delta A_2 - \cdots - D(M)\times \Delta A_{M-1} -\cdots\\ D(m)&= \frac{e^{s \times y(s)}}{CF \times FP} \left( \sum_{t=0}^{2(T-s-\tau)}\frac{C\left((s+\tau+t\times 0.5)^m - s^m \right)}{e^{(s +\tau + t\times 0.5)\times y(s +\tau + t\times 0.5)}} + \frac{F(T^m - s^m)}{e^{T\times y(T)}} \right)\\ m&=1,2,3,\dots,M \end{aligned} \]