LaTeX編輯數學公式基本語法元素
LaTeX中的數學模式有兩種形式:
-
inline 和 display。
- 前者是指在正文插入行間數學公式,后者獨立排列,可以有或沒有編號。
-
行間公式(inline)
- 用$將公式括起來。
-
塊間公式(displayed)
- 用$$將公式括起來是無編號的形式
- 還有[.....]的無編號獨立公式形式但Markdown好像不支持。
- 塊間元素默認是居中顯示的。
各類希臘字母編輯表
-
上下標、根號、省略號
- 下標:x_i:\(x_i\)
- 上標:x^2: \(x^2\)
- 注意:上下標如果多於一個字母或者符號,需要用一對{}括起來 x_{i1}: \(x_{i1}\) \(x^{at}\)
- 根號: \sqrt[n]{5}: \(\sqrt[n]{5}\)
- 省略號:\cdots: \(\cdots\)
-
運算符
-
基本運算符+ - * ÷
-
求和:
- \sum_1^n: \(\sum_1^n\)
- \sum_{x,y}: \(\sum_{x,y}\)
-
積分:
- \int_1^n: \(\int_1^n\)
-
極限
- lim_{x \to \infy}: \(lim\_{x \to \infty}\)
-
行列式
-
$$ X=\left| \begin{matrix} x_{11} & x_{12} & \cdots & x_{1d}\\ x_{21} & x_{22} & \cdots & x_{2d}\\ \vdots & \vdots & \ddots & \vdots \\ x_{11} & x_{12} & \cdots & x_{1d}\\ \end{matrix} \right| $$
\[X=\left| \begin{matrix} x_{11} & x_{12} & \cdots & x_{1d}\\ x_{21} & x_{22} & \cdots & x_{2d}\\ \vdots & \vdots & \ddots & \vdots \\ x_{11} & x_{12} & \cdots & x_{1d}\\ \end{matrix} \right| \]
-
-
矩陣
-
$$ \begin{matrix} 1 & x & x^2\\ 1 & y & y^2\\ 1 & z & z^2\\ \end{matrix} $$
\[\begin{matrix} 1 & x & x^2\\ 1 & y & y^2\\ 1 & z & z^2\\ \end{matrix} \]
-
-
-
-
箭頭
-
分段函數
-
$$ f(n)= \begin{cases} n/2, & \text{if $n$ is even}\\ 3n+1,& \text{if $n$ is odd} \end{cases} $$
\[f(n)= \begin{cases} n/2, & \text{if $n$ is even}\\ 3n+1,& \text{if $n$ is odd} \end{cases} \]
-
-
方程組
-
$$ \left\{ \begin{array}{c} a_1x+b_1y+c_1z=d_1\\ a_2x+b_2y+c_2z=d_2\\ a_3x+b_3y+c_3z=d_3 \end{array} \right. $$
\[\left\{ \begin{array}{c} a_1x+b_1y+c_1z=d_1\\ a_2x+b_2y+c_2z=d_2\\ a_3x+b_3y+c_3z=d_3 \end{array} \right. \]
-
-
常用公式
-
線性模型
-
$$ h(\theta) = \sum_{j=0} ^n \theta_j x_j $$
\[h(\theta) = \sum_{j=0} ^n \theta_j x_j \]
-
-
均方誤差
-
$$ J(\theta) = \frac{1}{2m}\sum_{i=0}^m(y^i - h_\theta(x^i))^2 $$
\[J(\theta) = \frac{1}{2m}\sum_{i=0}^m(y^i - h_\theta(x^i))^2 \]
-
-
求積公式
-
\$$ H_c=\sum_{l_1+\dots +l_p}\prod^p_{i=1} \binom{n_i}{l_i} \$$
$$ H_c=\sum_{l_1+\dots +l_p}\prod^p_{i=1} \binom{n_i}{l_i} $$
-
-
批量梯度下降
-
$$ \frac{\partial J(\theta)}{\partial\theta_j} = -\frac1m\sum_{i=0}^m(y^i - h_\theta(x^i))x^i_j $$
\[\frac{\partial J(\theta)}{\partial\theta_j} = -\frac1m\sum_{i=0}^m(y^i - h_\theta(x^i))x^i_j \]
-
-
推導過程
-
$$ \begin{align} \frac{\partial J(\theta)}{\partial\theta_j} & = -\frac1m\sum_{i=0}^m(y^i - h_\theta(x^i)) \frac{\partial}{\partial\theta_j}(y^i-h_\theta(x^i))\\ & = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i)) \frac{\partial}{\partial\theta_j}(\sum_{j=0}^n\theta_j x^i_j-y^i)\\ &=-\frac1m\sum_{i=0}^m(y^i -h_\theta(x^i)) x^i_j \end{align} $$
\[\begin{align} \frac{\partial J(\theta)}{\partial\theta_j} & = -\frac1m\sum_{i=0}^m(y^i - h_\theta(x^i)) \frac{\partial}{\partial\theta_j}(y^i-h_\theta(x^i))\\ & = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i)) \frac{\partial}{\partial\theta_j}(\sum_{j=0}^n\theta_j x^i_j-y^i)\\ &=-\frac1m\sum_{i=0}^m(y^i -h_\theta(x^i)) x^i_j \end{align} \]
-
-
-
字符下標
-
$$ \max \limits_{a<x<b}\{f(x)\} $$
\[\max \limits_{a<x<b}\{f(x)\} \]
-
-
end