對於二次規划(quadratic programming)和線性規划(Linear Programming)問題
MATLAB里是有quadprog函數可以直接用來解決二次規划問題的,linprog函數來解決線性規划問題。Python中也有很多庫用來解決,對於二次規划有CVXOPT, CVXPY, Gurobi, MOSEK, qpOASES 和 quadprog; 對於線性規划有Gurobi, PuLP, cvxopt。
目前發現quadprog進行pip install quadprog
不成功,而cvxopt成功了,就先說cvxopt的使用。
安裝
conda install -c conda-forge cvxopt
安裝非常順利
使用
cvxopt有自己的matrix格式,因此使用前得包裝一下
對於二次規划:
def cvxopt_solve_qp(P, q, G=None, h=None, A=None, b=None):
P = .5 * (P + P.T) # make sure P is symmetric
args = [cvxopt.matrix(P), cvxopt.matrix(q)]
if G is not None:
args.extend([cvxopt.matrix(G), cvxopt.matrix(h)])
if A is not None:
args.extend([cvxopt.matrix(A), cvxopt.matrix(b)])
sol = cvxopt.solvers.qp(*args)
if 'optimal' not in sol['status']:
return None
return np.array(sol['x']).reshape((P.shape[1],))
對於線性規划:
def cvxopt_solve_lp(f, A, b):
#args = [cvxopt.matrix(f), cvxopt.matrix(A), cvxopt.matrix(b)]
#cvxopt.solvers.lp(*args)
sol = cvxopt.solvers.lp(cvxopt.matrix(f), cvxopt.matrix(A), cvxopt.matrix(b))
return np.array(sol['x']).reshape((f.shape[0],))
參考:
Quadratic Programming in Python
Linear Programming in Python with CVXOPT
cvxopt.org