格拉布斯准則:https://baike.baidu.com/item/%E6%A0%BC%E6%8B%89%E5%B8%83%E6%96%AF%E5%87%86%E5%88%99/3909586
Grubbs格拉布斯檢驗臨界值表:https://wenku.baidu.com/view/0f3c083a172ded630a1cb6c8.html
簡介
Grubbs測試(以1950年發表測試的Frank E. Grubbs命名),也稱為最大歸一化殘差測試或極端學生化偏差測試,是一種統計測試,用於檢測假設的單變量數據集中的異常值來自正常分布的人口。
定義
格拉布斯的測試基於正態假設。也就是說,在應用Grubbs測試之前,應首先驗證數據是否可以通過正態分布合理地近似。
格拉布斯的測試一次檢測到一個異常值。從數據集中刪除該異常值,並且迭代測試直到沒有檢測到異常值。但是,多次迭代會改變檢測概率,並且測試不應該用於六個或更少的樣本大小(n>6),因為它經常將大多數點標記為異常值。
Grubbs測試是根據假設定義的:
:數據集中沒有異常值
:數據集中只有一個異常值
公式
Grubbs檢驗統計量是樣本標准差的單位與樣本均值的最大絕對偏差。
這是測試的雙邊版本。
Grubbs測試也可以定義為單側測試。
要測試最小值是否為異常值
公式:
要測試最大值是否為異常值
公式:
表示最小值。
表示最大值。
對於雙邊測試,沒有異常值的假設在顯著級別a級被拒絕
表示的上臨界值的的t分布與N - 2 自由度和 顯着性水平a/(2N)。對於單側檢驗,用a/N代替a/(2N)。
t分布可用於構建真實均值的置信區間。
缺點
格拉布斯和和狄克遜法均給出了嚴格的結果,但存在狄克遜法同樣的缺陷。
優化
朱宏等人采用數據值的中位數取代平均值,改進得到了更為穩健的處理方法,有效消除了同側異常值的屏蔽效應。
國際上常推薦采用格拉布斯准則法。
參考:https://en.wikipedia.org/wiki/Grubbs%27_test_for_outliers