第二章
2.12
(1)擬合模型:
> library(openxlsx) #加載包 openxlsx
> data = read.xlsx("22_data.xlsx",sheet = 2) #read.xlsx 函數讀入數據
> x = data[,1]
> y = data[,2]
> res = lm(y~x) #構造線性回歸模型函數
> res #結果
Call:
lm(formula = y ~ x)
Coefficients:
(Intercept) x #得出線性回歸模型 y = -6.332 + 9.208 x
-6.332 9.208
> summary(res) #打印方差分析,系數的估計值及其檢驗。
Call:
lm(formula = y ~ x)
Residuals: #殘差統計量,殘差第一四分位數(1Q)和第三分位數(3Q)有大約相同的幅度,意味着有較對稱的鍾形分布
Min 1Q Median 3Q Max
-2.5629 -1.2581 -0.2550 0.8681 4.0581
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.33209 1.67005 -3.792 0.00353 ** #截距的點估計值及其檢驗
x 9.20847 0.03382 272.255 < 2e-16 *** #自變量系數的點估計值及其檢驗
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.946 on 10 degrees of freedom
Multiple R-squared: 0.9999, Adjusted R-squared: 0.9999 #相關系數與調整的相關系數
F-statistic: 7.412e+04 on 1 and 10 DF, p-value: < 2.2e-16 #模型的顯著性檢驗(F檢驗)
(2)根據上面程序結果,自變量具有顯著性,模型具有顯著性。
(3) 不能支持管理員的觀點,根據構造的線性回歸模型,平均環境溫度增加1°F,平均月水蒸氣消耗量將增加 9208+lb ,達不到10000lb.
(4) 使用58°F的平均環境溫度構造一個月中水蒸氣消耗量的99%預測區間:
> library(openxlsx)
> data = read.xlsx("22_data.xlsx",sheet = 2)
> x = data[,1]
> y = data[,2]
> fun = function(x) #計算預測值函數
+ {
+ y = -6.332 + 9.208*x
+ }
> y_pred = fun(x) #計算所有數的預測值
> s_y0_pred = function(x0,x,y,n) #構造計算預測值標准差的函數
+ {
+ n = 12
+ y_pred = fun(x)
+ sse = sum((y_pred - y)*(y_pred - y))
+ se = sqrt(sse/(n-2))
+ se * sqrt(1/n + ((x0-mean(x))^2)/sum((x-rep(mean(x),n))^2))
+ }
> x0 = 58 ; n = 12
> y0_pred = fun(x0) #當環境溫度為58°F,對應的因變量預測值
> s = s_y0_pred(x0,x,y,n)
> print(c(y0_pred-qt(0.995,n-2)*s,y0_pred+qt(0.995,n-2)*s)) #輸出結果
[1] 525.5666 529.8974
2.13
a.做出散點圖
> data = read.xlsx("22_data.xlsx",sheet = 1)
> x = data[,2]
> y = data[,1]
> plot(x,y,main = "散點圖",xlab = "index",ylab = "days")
> abline(lm(y~x))

b.估計預測方程
> lm(y~x)
Call:
lm(formula = y ~ x)
Coefficients:
(Intercept) x
-193.0 15.3
預測方程為:y = *-193.0 + 15.3 x
c.進行回歸顯著性檢驗
> summary(lm(y~x))
Call:
lm(formula = y ~ x)
Residuals:
Min 1Q Median 3Q Max
-41.70 -21.54 2.12 18.56 36.42
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -192.984 163.503 -1.180 0.258 #p值大於0.05
x 15.296 9.421 1.624 0.127 #p值大於0.05 , 回歸變量與響應變量沒有顯著相關性
Residual standard error: 23.79 on 14 degrees of freedom
Multiple R-squared: 0.1585, Adjusted R-squared: 0.09835
F-statistic: 2.636 on 1 and 14 DF, p-value: 0.1267
根據上述結果,指數與天數並沒有顯著相關性。
d.計算並畫出95%置信帶與95%預測帶
> sx = sort(x)
> #計算置信區間 > conf = predict(fm,data.frame(x = sx),interval = "confidence") > #計算預測區間 > pred = predict(fm,data.frame(x=sx),interval = "prediction") > plot(x,y,ylim = c(0,150),xlab = "index",ylab = "days",main = "95%預測帶、置信帶") > abline(fm) > lines(sx,conf[,2],col = "red") > lines(sx,conf[,3],col = "red") > lines(sx,pred[,2],col = "blue") > lines(sx,pred[,3],col = "blue")

2.14
a.散點圖

b.估計預測方程
> fm = lm(y~x)
> fm
Call:
lm(formula = y ~ x)
Coefficients:
(Intercept) x
0.6714 -0.2964
預測方程為:y = 0.6714 - 0.2964 x
c.數據分析
> summary(fm)
Call:
lm(formula = y ~ x)
Residuals:
Min 1Q Median 3Q Max
-0.20464 -0.10634 0.02196 0.08527 0.20643
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.6714 0.1595 4.209 0.00563 **
x -0.2964 0.2314 -1.281 0.24754 #p值大於0.05 ,該自變量沒有顯著相關
---
Signif. codes:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.15 on 6 degrees of freedom
Multiple R-squared: 0.2147, Adjusted R-squared: 0.08382 R^2 = 0.2147
F-statistic: 1.64 on 1 and 6 DF, p-value: 0.2475 #整個模型不具有顯著性。
d.計算並畫出95%置信帶和95%預測帶
> plot(x,y,main = "散點圖",xlab = "比率",ylab = "黏度",ylim = c(-0.1,1)) > sx = sort(x) > conf = predict(fm,data.frame(sx),interval = "confidence") > pred = predict(fm,data.frame(sx),interval = "prediction") > abline(fm) > lines(sx,conf[,2],col = "red") #繪制置信下限 > lines(sx,conf[,3],col = "red") #繪制置信上限 > lines(sx,pred[,2],col = "blue") #繪制預測下限 > lines(sx,pred[,3],col = "blue") #繪制預測上限

2.15
a.估計預測方程
Call: lm(formula = y ~ x) Coefficients: (Intercept) x 1.281511 -0.008758
預測方程為: y = 1.281511 - 0.008758 x
b.全面分析此模型
> fm = lm(y~x)
> summary(fm)
Call:
lm(formula = y ~ x)
Residuals:
Min 1Q Median 3Q Max
-0.043955 -0.035863 -0.009305 0.019900 0.069559
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.2815107 0.0468683 27.34 1.58e-07 ***
x -0.0087578 0.0007284 -12.02 2.01e-05 *** #根據 p 值,自變量溫度極顯著
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.04743 on 6 degrees of freedom
Multiple R-squared: 0.9602, Adjusted R-squared: 0.9535
F-statistic: 144.6 on 1 and 6 DF, p-value: 2.007e-05 #根據 p 值,整個回歸模型是顯著的
c.畫95%置信帶、預測帶

2.16
先畫出散點圖:

從散點圖可以看出容量與壓力之間具有明顯的線性關系,我們構造一元線性模型:
> fm = lm(y~x) > fm Call: lm(formula = y ~ x) Coefficients: (Intercept) x -290.707 2.346
估計預測模型為: y = -290.707 + 2.346x
再對模型進行檢驗:
> summary(fm)
Call:
lm(formula = y ~ x)
Residuals:
Min 1Q Median 3Q Max
-4.3276 -0.9227 0.0773 1.2676 2.9577
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.907e+02 1.355e+00 -214.6 <2e-16 ***
x 2.346e+00 4.007e-04 5855.4 <2e-16 *** #該自變量極顯著
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.741 on 31 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared: 1
F-statistic: 3.429e+07 on 1 and 31 DF, p-value: < 2.2e-16 #整個回歸模型極顯著
2.17
> x = data[,2]
> y = data[,1]
> n = length(x)
> plot(x,y)
>
> fm = lm(y~x) #一元回歸模型
> abline(fm)
> coef(fm)
(Intercept) x
163.930734 1.579647
> summary(fm)
Call:
lm(formula = y ~ x)
Residuals:
Min 1Q Median 3Q Max
-1.41483 -0.91550 -0.05148 0.76941 2.72840
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 163.9307 2.6551 61.74 < 2e-16 ***
x 1.5796 0.1051 15.04 1.88e-10 ***
---
Signif. codes:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.291 on 15 degrees of freedom
Multiple R-squared: 0.9378, Adjusted R-squared: 0.9336
F-statistic: 226 on 1 and 15 DF, p-value: 1.879e-10
> anova(fm) #方差分析
Analysis of Variance Table
Response: y
Df Sum Sq Mean Sq F value Pr(>F)
x 1 376.92 376.92 226.04 1.879e-10 ***
Residuals 15 25.01 1.67
---
Signif. codes:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
>
> rm(list = ls())
2.18
library(openxlsx)
data = read.xlsx("2.18.xlsx",sheet = 1)
x = data[,2]
y = data[,3]
n = length(x)
plot(x,y)
fm = lm(y~x) #一元回歸
coef(fm) #輸出回歸系數
summary(fm)
anova(fm)
#構造此數據的95%置信帶與預測帶
sx = sort(x)
conf = predict(fm,data.frame(x = sx),interval = "confidence")
pred = predict(fm,data.frame(x = sx),interval = "prediction")
abline(fm)
lines(sx,conf[,2],col = 'red')
lines(sx,conf[,3],col = 'red')
lines(sx,pred[,2],col = 'blue')
lines(sx,pred[,3],col = 'blue')
plot(x,y,main = "%95置信帶與95%預測帶",xlab = "花費錢數",ylab = "每周掙回的印象",ylim=c(-100,200))
rm(list = ls())
第三章
3.8
#a.擬合co2產量y與總溶劑量x6和氫消耗量x7關系的多元回歸模型
library(openxlsx) data = read.xlsx("3.8.xlsx",sheet = 1) data y = data[,1] #響應變量 x = data[,c(7,8)] #回歸變量 fm = lm(y~.,x) #多元線性回歸 summary(fm) anova(fm) #檢驗顯著性 summary(fm) #d confint(fm) #e x6 = data[,7] fm1 = lm(y~x6) summary(fm1) anova(fm1) confint(fm1,level = 0.95) rm(list = ls())
3.9
library(openxlsx)
data = read.xlsx("3.9.xlsx",sheet = 1)
y = data[,1]
x = data[,c(2,5)]
#a.擬合多元回歸模型
fm = lm(y~.,x)
coef(fm)
#b,c 檢驗回歸顯著性()
anova(fm)
summary(fm)
#e
#檢驗是否有潛在的多重共線性
r2 = 0.6367
vif = 1/(1-r2)
rm(list = ls())
3.10
> #3.10
> library(openxlsx)
> data = read.xlsx("3.10.xlsx",sheet = 1)
> #a
> y = data[,6]
> x = data[,c(1:5)]
> fm = lm(y~.,x)
> coef(fm)
(Intercept) Clarity Aroma Body Flavor
3.9968648 2.3394535 0.4825505 0.2731612 1.1683238
Oakiness
-0.6840102
> #b,c
> summary(fm)
Call:
lm(formula = y ~ ., data = x)
Residuals:
Min 1Q Median 3Q Max
-2.85552 -0.57448 -0.07092 0.67275 1.68093
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.9969 2.2318 1.791 0.082775 .
Clarity 2.3395 1.7348 1.349 0.186958
Aroma 0.4826 0.2724 1.771 0.086058 .
Body 0.2732 0.3326 0.821 0.417503
Flavor 1.1683 0.3045 3.837 0.000552 ***
Oakiness -0.6840 0.2712 -2.522 0.016833 *
---
Signif. codes:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.163 on 32 degrees of freedom
Multiple R-squared: 0.7206, Adjusted R-squared: 0.6769
F-statistic: 16.51 on 5 and 32 DF, p-value: 4.703e-08
> #d
> xx = data[,c(2,4)]
> fm1 = lm(y~.,xx)
> summary(fm1)
Call:
lm(formula = y ~ ., data = xx)
Residuals:
Min 1Q Median 3Q Max
-2.19048 -0.60300 -0.03203 0.66039 2.46287
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.3462 1.0091 4.307 0.000127 ***
Aroma 0.5180 0.2759 1.877 0.068849 .
Flavor 1.1702 0.2905 4.027 0.000288 ***
---
Signif. codes:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.229 on 35 degrees of freedom
Multiple R-squared: 0.6586, Adjusted R-squared: 0.639
F-statistic: 33.75 on 2 and 35 DF, p-value: 6.811e-09
> AIC(fm) #優先考慮的模型應是AIC值最小的那一個
[1] 126.7552
> AIC(fm1)
[1] 128.3761
> #e
> conf = confint(fm)
> conf1 = confint(fm1)
> conf = as.matrix(conf)
> conf1 = as.matrix(conf1)
>
> conf[5,2]-conf[5,1]
[1] 1.240414
> conf1[3,2]-conf[3,1]
[1] 1.83241
>
> rm(list = ls())
>
3.11
> #3.11
> library(openxlsx)
> data = read.xlsx("3.11.xlsx",sheet = 1)
> y = data[,6]
> x = data[,c(1:5)]
> #a
> fm = lm(y~.,x)
> coef(fm)
(Intercept) x1 x2 x3
5.207905e+01 5.555556e-02 2.821429e-01 1.250000e-01
x4 x5
1.776357e-16 -1.606498e+01
> #b,c
> summary(fm)
Call:
lm(formula = y ~ ., data = x)
Residuals:
Min 1Q Median 3Q Max
-12.250 -4.438 0.125 5.250 9.500
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.208e+01 1.889e+01 2.757 0.020218 *
x1 5.556e-02 2.987e-02 1.860 0.092544 .
x2 2.821e-01 5.761e-02 4.897 0.000625 ***
x3 1.250e-01 4.033e-01 0.310 0.762949
x4 1.776e-16 2.016e-01 0.000 1.000000
x5 -1.606e+01 1.456e+00 -11.035 6.4e-07 ***
---
Signif. codes:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 8.065 on 10 degrees of freedom
Multiple R-squared: 0.9372, Adjusted R-squared: 0.9058
F-statistic: 29.86 on 5 and 10 DF, p-value: 1.055e-05
> #d
> xx = data[,c(2,5)]
> fm1 = lm(y~.,xx)
> summary(fm1)
Call:
lm(formula = y ~ ., data = xx)
Residuals:
Min 1Q Median 3Q Max
-15.375 -4.188 -0.875 3.438 12.625
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 80.13461 5.69146 14.080 3.01e-09 ***
x2 0.28214 0.05883 4.796 0.000349 ***
x5 -16.06498 1.48659 -10.807 7.26e-08 ***
---
Signif. codes:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 8.236 on 13 degrees of freedom
Multiple R-squared: 0.9149, Adjusted R-squared: 0.9018
F-statistic: 69.89 on 2 and 13 DF, p-value: 1.107e-07
> AIC(fm)
[1] 118.6885
> AIC(fm1)
[1] 117.5552
>
> #e
> confint(fm)
2.5 % 97.5 %
(Intercept) 9.99688896 94.1612109
x1 -0.01100273 0.1221138
x2 0.15378045 0.4105053
x3 -0.77353688 1.0235369
x4 -0.44926844 0.4492684
x5 -19.30879739 -12.8211665
> confint(fm1) #溫度:x2
2.5 % 97.5 %
(Intercept) 67.8389462 92.4302647
x2 0.1550559 0.4092298
x5 -19.2765650 -12.8533989
>
第四章
例4.1 根據例3.1數據,輸出殘差,標准化殘差,學生化殘差,press殘差,外部學生化殘差 表格
library(openxlsx)
#例4.1---------------------------------------------------------
#處理數據
data = read.xlsx("3.1.xlsx",sheet = 1)
data = data[,c(2,3,4)]
names(data)=c("time","cases","distance")
y = data$time
x1 = data$cases
x2 = data$distance
#線性回歸
fm = lm(y~x1+x2)
#殘差
ei = residuals(fm)
View(ei)
#標准化殘差(1)
di = rstandard(fm)
View(di)
#計算mse的函數
mse = function(ei,p) #ei是殘差向量,p是回歸參數個數
{
n = length(ei)
sse = sum(ei**2)
mse = sse/(n-p)
return(mse)
}
di_ = ei/sqrt(mse(ei,3))#標准化殘差(2)
View(di_)
#學生化殘差(1)
ri = rstudent(fm)
View(ri)
#計算帽子矩陣,並提取對角線元素
H = function(X) #X是回歸向量矩陣
{
h = X%*%solve(t(X)%*%X)%*%t(X)
hii = diag(h)
return(hii)
}
X = cbind(1,x1,x2)
hii = H(X) #計算hii
View(hii)
ri_ = ei/sqrt(mse(ei,3)*(1-hii)) #學生化殘差(2)
View(ri_)
#計算PRESS統計量
e_i = ei/(1-hii) #計算e(i)
View(e_i)
#外部學生化殘差
ti = function(ei,X) #輸入殘差回歸變量矩陣
{
p = ncol(X) #回歸參數個數
n = length(ei) #數據個數
hii = H(X) #帽子矩陣主對角線元素
s2_i = ((n-p)*mse(ei,p) -(ei**2)/(1-hii)) / (n-p-1) #計算S(i)^2
ans = ei / sqrt(s2_i*(1-hii))
return(ans)
}
ti = ti(ei,X)
View(ti)
#計算PRESS統計量
press = function(ei,X)
{
hii = H(X)
res = sum((ei/(1-hii))**2)
#View(res)
}
Press = (ei/(1-hii))**2
View(Press)
PRESS = press(ei,X) #輸出PRESS統計量
#將所有殘差數據寫入表格
Num = seq(1,length(ei))
mydata = cbind(Num,ei,di_,ri_,hii,e_i,ti,Press)
class(mydata)
View(mydata)
write.xlsx(mydata,"C:\\Users\\86130\\Desktop\\mydata.xlsx")

#例4.2
ti #外部學生化殘差
View(ti)
n = length(ti) #數據個數
order = rank(ti) #rank函數返回ti按升序排序之后的序號
Pi = (order-1/2)/n #累積概率
plot(ti,Pi,xlim=c(-3,5)) #畫正態概率圖
fm_tP = lm(Pi~ti) #線性回歸模型
abline(fm_tP) #添加回歸線
#例4.3
#畫殘差與擬合值y_i的殘差圖
plot(fitted(fm),ti) #fitted(fm)返回模型fm的預測值
abline(h = 0) #添加直線y=0
#例4.4
#畫殘差與回歸變量的殘差圖
par(mfrow =c(1,2))
plot(x1,ti,xlab = "箱數",ylab = "外部學生化殘差")
abline(h=0) #h:y軸 v:x軸
plot(x2,ti,xlab = "距離",ylab = "外部學生化殘差")
abline(h=0)
#例4.5
#畫偏回歸圖
#回歸變量x1的偏回歸圖
lm.y_x2 = lm(y~x2)
lm.x1_x2 = lm(x1~x2)
plot(resid(lm.x1_x2),resid(lm.y_x2),xlab = "箱數",ylab = "時間")
#回歸變量x2的偏回歸圖
lm.y_x1 = lm(y~x1)
lm.x2_x1 = lm(x2~x1)
plot(resid(lm.x2_x1),resid(lm.y_x1),xlab = "距離",ylab = "時間",pch = 10)
#例4.6
#計算PRESS的預測R^2
R_pred = function(X,y)
{
hii = H(X)
ei = resid(lm(y~X[,2]+X[,3]))
PRESS = sum((ei/(1-hii))**2)
sst = sum((y-mean(y))**2)
ans = 1-PRESS/sst
return(ans)
}
R_pred(X,y)
#例4.7
data = read.xlsx("2.1.xlsx",sheet = 1)
names(data) = c("order","y","x")
x = data$x
y = data$y
X = cbind(1,x)
fm = lm(y~x)
#繪制正態概率圖
plot_ZP = function(ti) #輸入外部學生化殘差
{
n = length(ti)
order = rank(ti) #按升序排列,t(i)是第order個
Pi = (order-1/2)/n #累積概率
plot(ti,Pi,xlim=c(-3,3),xlab = "學生化殘差",ylab = "百分比") #畫正態概率圖
}
ei = resid(fm)
ti = ti(ei,X) #計算外部學生化殘差ti
plot_ZP(ti) #繪制正態概率圖
plot(fitted(fm),ti) #繪制殘差與所預測y_pred的殘差圖
abline(h = 0)
#繪制除去5,6兩點的正態概率圖
data = data[-c(5,6),]
x = data$x
y = data$y
X = cbind(1,x)
fm1 = lm(y~x) #線性模型
ei = resid(fm1)
ti = ti(ei,X) #計算外部學生化殘差ti
plot(fitted(fm1),ti) #繪制殘差與所預測y_pred的殘差圖
abline(h = 0)
#例4.8
data = read.xlsx("4.8.xlsx",sheet = 1)
x = data$x
y = data$y
fm = lm(y~x) #線性回歸
a = anova(fm) #方差分析
sst = sum(a[2]) #總平方和
ssg = a[1,2] #回歸平方和
sse = a[2,2] #殘差平方和
level_x = c(table(x)>1) #查看哪些自變量重復
#進行失擬檢驗
library(rsm) #加載rsm包用於失擬檢驗
lm.rsm<-rsm(y~FO(x))
loftest(lm.rsm) #調用失擬檢驗函數loftest
rm(list = ls())
例4.10 通過近鄰點估計純誤差
#例4.10
data = read.xlsx("3.1.xlsx",sheet = 1) #導入數據
names(data)=c("order","time","cases","distance")
y = data$time #准備數據
x1 = data$cases
x2 = data$distance
fm = lm(y~x1 + x2) #線性回歸
coef(fm)
b_cases = coef(fm)[2] #beta1
b_distance = coef(fm)[3] #beta2
y_pred = predict(fm) #計算預測值
ei = resid(fm) #殘差
new_data = cbind(data,y_pred,ei) #構建新數據
new_data = new_data[order(new_data$y_pred),] #按照預測值升序排序
a = anova(fm) #方差分析
sse = a[3,2] #殘差平方和
mse = a[3,3] #殘差均方和
#計算Dii'
Di_i = function(i,i_,mse,beta1,beta2,new_data) #i第i個點,i_第i_個點,data數據集
{
one = beta1*(new_data$cases[i]-new_data$cases[i_])/sqrt(mse)
two = beta2*(new_data$distance[i]-new_data$distance[i_])/sqrt(mse)
ans = one**2 + two**2
return(ans)
}
#定義一個數據框用來存儲結果
σ_ans = data.frame(
i = numeric(0), #觀測值i
i_ = numeric(0), #觀測值i_
Dii = numeric(0), #Di_i
delta = numeric(0) #E|ei-ei_|
)
#計算相鄰k個點的兩點的 Di_i,i,i_,Delta殘差
for (k in c(1:4))
{
for (i in c(1:24))
{
if (i+k>25)
break
D = Di_i(i,i+k,mse,b_cases,b_distance,new_data) #計算相鄰k個點的兩點的Di_i
E = abs(new_data$ei[i]-new_data$ei[i+k]) #計算相鄰k個點的兩點的Delta殘差
another = data.frame(
i = new_data$order[i],
i_ = new_data$order[i+k],
Dii = D,
delta = E
)
σ_ans = rbind(σ_ans,another) #合並兩個數據框
}
}
names(σ_ans) = c("i","i_","Dii^2","Delta") #重命名最后的數據框
σ_ans = σ_ans[order(σ_ans$Dii^2),] #按照Di_i對數據框進行排序
row.names(σ_ans) = c(1:90) #對每一行進行編號
#計算累計標准差
std = numeric(0) #存儲累計標准差
sum_Delta = 0 #存儲累計Delta殘差
for (i in 1:90)
{
sum_Delta = sum_Delta + σ_ans$Delta[i] #0.886/m*Σ(Delta)
res = 0.886/i*sum_Delta
std[i] = res
}
σ_ans = cbind(std,σ_ans)
4.16
#######################自己編的函數,運行后直接調用#######################
#計算mse的函數
mse = function(ei,p) #ei是殘差向量,p是回歸參數個數
{
n = length(ei)
sse = sum(ei**2)
mse = sse/(n-p)
return(mse)
}
#計算帽子矩陣,並提取對角線元素
H = function(X) #X是回歸向量矩陣
{
h = X%*%solve(t(X)%*%X)%*%t(X)
hii = diag(h)
return(hii)
}
#外部學生化殘差
ti = function(ei,X) #輸入殘差回歸變量矩陣
{
p = ncol(X) #回歸參數個數
n = length(ei) #數據個數
hii = H(X) #帽子矩陣主對角線元素
s2_i = ((n-p)*mse(ei,p) -(ei**2)/(1-hii)) / (n-p-1) #計算S(i)^2
ans = ei / sqrt(s2_i*(1-hii))
return(ans)
}
#計算PRESS統計量
press = function(ei,X) #X是自變量的設計矩陣
{
hii = H(X)
res = sum((ei/(1-hii))**2)
#View(res)
}
#計算PRESS的預測R^2
R_pred = function(X,y)
{
hii = H(X)
ei = resid(lm(y~X[,2]+X[,3]))
PRESS = sum((ei/(1-hii))**2)
sst = sum((y-mean(y))**2)
ans = 1-PRESS/sst
return(ans)
}
#繪制正態概率圖
plot_ZP = function(ti) #輸入外部學生化殘差
{
n = length(ti)
order = rank(ti) #按升序排列,t(i)是第order個
Pi = (order-1/2)/n #累積概率
plot(ti,Pi,xlim=c(-3,3),xlab = "學生化殘差",ylab = "百分比") #畫正態概率圖
}
#進行失擬檢驗
library(rsm) #加載rsm包用於失擬檢驗
lm.rsm<-rsm(y~FO(x))
loftest(lm.rsm) #調用失擬檢驗函數loftest
#計算Dii'
Di_i = function(i,i_,mse,beta1,beta2,new_data) #i第i個點,i_第i_個點,data數據集
{
one = beta1*(new_data$cases[i]-new_data$cases[i_])/sqrt(mse)
two = beta2*(new_data$distance[i]-new_data$distance[i_])/sqrt(mse)
ans = one**2 + two**2
return(ans)
}
#4.16
#a.殘差的正態概率圖
data = read.xlsx('3.12.xlsx',sheet = 1) #導入數據
y = data$y
x1 = data$x1
x2 = data$x2
X = cbind(1,x1,x2) #處理數據
fm = lm(y~x1+x2) #線性回歸模型
ei = resid(fm) #計算殘差
ti = ti(ei,X) #ti()自制求外部學生化殘差函數
plot_ZP(ti) #plot_zp()自制繪制正態概率圖函數
#為什么要編寫函數?
#1.這些題目都是重復的代碼操作
#2.如果是想多次重復打代碼來熟悉,大可不必,因為會忘的。
#正態概率圖有一個異常點,order(ti) 返回第一小的是第28號點
#b.殘差與響應變量預測值的殘差圖
plot(fitted(fm),ti)
#殘差圖表明殘差包含在一條水平帶中,模型不存在明顯的缺點。
#c.
#模型fm的PRESS統計量
press_fm = press(ei,X)
#新模型fm1的PRESS統計量
fm1 = lm(y~x2)
ei = resid(fm1)
X = cbind(1,x2)
press_fm1 = press(ei,X) #press()自制求press統計量函數
#選擇press統計量小的模型
