數學建模python matlab 編程(指派問題)


指派授課問題

現有A、B、C、D四門課程,需由甲、乙、丙、丁四人講授,並且規定:

每人只講且必須講1門課;每門課必須且只需1人講。

四人分別講每門課的費用示於表中:

費用

A

B

C

D

2

10

9

7

15

4

14

8

13

14

16

11

4

15

13

9

 

帶包python代碼:

from scipy.optimize import linear_sum_assignment
import numpy as np

#cost =np.array([[4,1,3],[2,0,5],[3,2,2]])
cost =np.array([
[2,10,9,7],
[15,4,14,8],
[13,14,16,11],
[4,15,13,9]])
row_ind,col_ind=linear_sum_assignment(cost)
print(row_ind)#開銷矩陣對應的行索引
print(col_ind)#對應行索引的最優指派的列索引
print(cost[row_ind,col_ind])#提取每個行索引的最優指派列索引所在的元素,形成數組
print(cost[row_ind,col_ind].sum())#數組求和

#輸出指派矩陣
p = np.zeros((4,4))
p[row_ind,col_ind]=1 
print(p)

 

 

暴力python代碼:

# -*- coding: utf-8 -*-
import numpy as np
import copy

c=[2,10,9,7,
15,4,14,8,
13,14,16,11,
4,15,13    ,9
]

c = np.array(c)
c = c.reshape((4,4))


all_p=[]

class obj:
    def _init_(self):
        self.p=[]
        self.cost=0

for i in range(4):
    for j in range(4):
        if j==i:
            continue   
        for u in range(4):
            if u==i or u==j :
                continue
            for v in range(4):
                if v==i or v==j or v==u:
                    continue
                
                p = np.zeros((4,4))
                p[0,i]=p[1,j]=p[2,u]=p[3,v]=1 
                
                ans = obj()
                ans.p = copy.deepcopy(p)
                ans.cost = sum(sum(c*ans.p))
                all_p.append(ans)


all_p.sort(key=lambda ans: ans.cost, reverse=False)
print(all_p[0].p)               
print(all_p[0].cost)        

 

 

我寫的matlab:

 

clear
C=[2    10    9    7
15    4    14    8
13    14    16    11
4    15    13    9];
 
A = perms(1:4);%perm顯示1,2,3,4四個數的全排列
L = length(A)
best=999
best_mat=[]
for i=1:L
    a = zeros(4,4);
    b = A(i,:);%遍歷全排列中的每一種  
    c = 1:4;
    a(sub2ind(size(a), b, c))=1;%a矩陣指定的位置賦值為1
    s = sum(sum(a.*C));%求出費用和
    if best>s %挑出最大的
        best_mat=a;
        best=s;
    end
end
best_mat
best

 

  

老師的matlab代碼1:

clear
n=4;
A=perms(1:n);
G=size(A);  %24 4   size(A,1) 24   size(A,2) 24
n0=G(1);   %24
B=[2,10,9,7;15,4,14,8;13,14,16,11;4,15,13,9];
for n1=1:n0
        %C為第n1中排列情況下,費用的4個取值
        C(1)=B(1,A(n1,1));C(2)=B(2,A(n1,2));
        C(3)=B(3,A(n1,3));C(4)=B(4,A(n1,4));
        %D{n1}表示第n1種情況下的4個取值
        D{n1}=[C(1),C(2),C(3),C(4)];
        s(n1)=sum(D{n1});
end
%找到最小的,返回a為行左邊,b為縱坐標,a=1,b=9
[a,b]=find(s==min(s));
K=A(b,:)

 

根據老師的代碼改進我的代碼:

clear
C=[2	10	9	7
15	4	14	8
13	14	16	11
4	15	13	9];
 
A = perms(1:4);%perm顯示1,2,3,4四個數的全排列
L = length(A)
for i=1:L
    a = zeros(4,4);
    b = A(i,:);%遍歷全排列中的每一種  
    c = 1:4;
    a(sub2ind(size(a), b, c))=1;%a矩陣指定的位置賦值為1
    D{i}=a;
    S(i)=sum(sum(a.*C));%求出費用和
end
[a,b]=find(S==min(S))
D{b}
S(b)

  

 

老師的matlab代碼2:隨機生成,不是很好,看運氣

clear
A=[2 15 13 4];B=[10 4 14 15];C=[9 14 16 13];D=[7 8 11 9];
Y=zeros(1,1000);s=64;x=zeros(1,4);
for i= 1:1000
    X=randperm(4);
    Y(i)=A(X(1))+B(X(2))+C(X(3))+D(X(4));
    if Y(i)<s
        s=Y(i);
        x=X;
    end
end    
s,x

 

 

網上常見的matlab代碼:

%適用於任意n階系數矩陣
clear all;
C=[2	10	9	7,
15	4	14	8,
13	14	16	11,
4	15	13	9,
];%效率矩陣C
n=size(C,1);%計算C的行列數n
C=C(:);%計算目標函數系數,將矩陣C按列排成一個列向量即可。
A=[];B=[];%沒有不等式約束
Ae=zeros(2*n,n^2);%計算等約束的系數矩陣a
for i=1:n
    for j=(i-1)*n+1:n*i
        Ae(i,j)=1;
    end
    for k=i:n:n^2
        Ae(n+i,k)=1;
    end
end
Be=ones(2*n,1);%等式約束右端項b
Xm=zeros(n^2,1);%決策變量下界Xm
XM=ones(n^2,1);%決策變量上界XM
[x,z]=linprog(C,A,B,Ae,Be,Xm,XM);%使用linprog求解
x=reshape(x,n,n);%將列向量x按列排成一個n階方陣
disp('最優解矩陣為:');%輸出指派方案和最優值
Assignment=round(x)%使用round進行四舍五入取整
disp('最優解為:');
z

 

線性規划matlab代碼:

%線性規划
c=[2,10,9,7,15,4,14,8,13,14,16,11,4,15,13,9];
Aeq=[1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0;
    0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0;
    0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0;
    0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1;
    1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0;
    0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0;
    0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0;
    0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1];
beq=[1,1,1,1,1,1,1,1];
lb=zeros(16,1);
ub=ones(16,1);
[x,fval] = linprog(c,[],[],Aeq,beq,lb,ub)

  

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM