1. 基於向量法的外心推導
作者: 姚彧
版本歷史:
版本 | 日期 | 說明 |
---|---|---|
0.1 | 2019-05-28 | 創建文檔 |
版權聲明:本文為作者原創文章,博客地址:https://www.cnblogs.com/yaoyu126 未經作者允許不得轉載。
1.1 原點三角形
假設在\(\triangle ABC\)中, \(A\)點坐標為\((0,0)\),其余點坐標分別為\(B(x_1,y_1),C(x_2,y_2)\), 我們稱\(\triangle ABC\)為原點三角形。對於非原點三角形,可以對\(A,B,C\)都減去\(A\)點坐標,從而轉化成原點三角形。在原點三角形\(\triangle ABC\)中,設外心\(P\)坐標為\((x,y)\)。
1.2 外心定義的向量性質
\(\triangle ABC\)外心的定義為: 外心\(P\)到\(\triangle ABC\)各頂點的距離相等,用向量表示為:
\(|\overrightarrow{PA}|=|\overrightarrow{PB}|=|\overrightarrow{PC}|\)
由以上性質可得:
\(\left\{\begin{aligned} |\overrightarrow{PA}|=|\overrightarrow{PB}| \Longrightarrow \triangle ABP是等腰三角形 \\ |\overrightarrow{PA}|=|\overrightarrow{PC}| \Longrightarrow \triangle ACP是等腰三角形 \\ |\overrightarrow{PB}|=|\overrightarrow{PC}| \Longrightarrow \triangle BCP是等腰三角形 \end{aligned}\right.\)
一般的,在等腰三角形\(\triangle ABP\)中,\(\overrightarrow{AP}\)在\(\overrightarrow{AB}\)上的投影為:
\(\cfrac{\overrightarrow{AP}\cdot\overrightarrow{AB}}{|\overrightarrow{AB}|} = \cfrac{|\overrightarrow{AB}|}{2} \Longrightarrow \overrightarrow{AP}\cdot\overrightarrow{AB} = \cfrac{|\overrightarrow{AB}|^2}{2}\)
因此,我們可以得到\(\triangle ABC\)外接圓向量性質:
\(\left\{\begin{aligned} \overrightarrow{AP}\cdot\overrightarrow{AB} = \cfrac{|\overrightarrow{AB}|^2}{2} \\ \overrightarrow{AP}\cdot\overrightarrow{AC} = \cfrac{|\overrightarrow{AC}|^2}{2} \\ \overrightarrow{BP}\cdot\overrightarrow{BC} = \cfrac{|\overrightarrow{BC}|^2}{2} \end{aligned}\right.\) 式1
1.3 原點三角形外心坐標推導
由原點三角形\(\triangle ABC\)定義可得:
\(\left\{\begin{aligned} \overrightarrow{AP} = (x,y) \\ \overrightarrow{AB} = (x_1,y_1)\\ \overrightarrow{AC} = (x_2,y_2) \end{aligned}\right.\)
由1.2中推導的外接圓向量性質,將上式代入取公式中的第1,2項,可得:
\(\left\{\begin{aligned} (x,y)\cdot(x_1,y_1) = \cfrac{|(x_1,y_1)|^2}{2} \\ (x,y)\cdot(x_2,y_2) = \cfrac{|(x_2,y_2)|^2}{2} \end{aligned}\right.\)
\(\Longrightarrow\left\{\begin{aligned} x_1\cdot x+y_1\cdot y = \cfrac{x_1^2+y_1^2}{2} \\ x_2\cdot x+y_2\cdot y = \cfrac{x_2^2+y_2^2}{2} \end{aligned}\right.\)
令\(b_1=\cfrac{x_1^2+y_1^2}{2}, b_2=\cfrac{x_2^2+y_2^2}{2}\)
\(\Longrightarrow\left\{\begin{aligned} x_1\cdot x+y_1\cdot y = b_1 \\ x_2\cdot x+y_2\cdot y = b_2 \end{aligned}\right.\)
上式可以使用線性方程Cramer法則求解,得:
\(D=\left|\begin{array}{cccc} x_1 & y_1\\ x_2 & y_2 \end{array}\right| = x_1\cdot y_2 - x_2\cdot y_1\)
\(\Longrightarrow\left\{\begin{aligned} x=\cfrac{\left|\begin{array}{cccc} b_1 & y_1\\ b_2 & y_2 \end{array}\right|}{D} \\ y = \cfrac{\left|\begin{array}{cccc} x_1 & b_1\\ x_2 & b_2 \end{array}\right|}{D} \end{aligned}\right.\)
最終,我們得到了外心的坐標公式:
\(\Longrightarrow\left\{\begin{aligned} x=\cfrac{b_1\cdot y_2 - b_2\cdot y_1}{D} \\ y = \cfrac{x_1\cdot b_2 - x_2\cdot b_1}{D} \end{aligned}\right.\) 式2
1.4 一般三角形外心坐標推導
對一般三角形\(\triangle A^{'}B^{'}C^{'}\),頂點分別坐標為\(A(x_0^{'},y_0^{'}),B(x_1^{'},y_1^{'}),C(x_2^{'},y_2^{'})\),將各頂點坐標都減去\(A\)點坐標,得到原點三角形\(\triangle ABC\)及其各頂點坐標\(A(0,0),B(x_1,y_1),C(x_2,y_2)\)。
應用式2,我們得到了三角形外心坐標公式
\(\Longrightarrow\left\{\begin{aligned} x = \cfrac{b_1\cdot y_2 - b_2\cdot y_1}{D}+(x_0^{'}-x_0) \\ y = \cfrac{x_1\cdot b_2 - x_2\cdot b_1}{D}+(y_0^{'}-y_0) \end{aligned}\right.\) 式3
2. 使用坐標法推導原點三角形外心
對原點三角形\(\triangle ABC\),利用外接圓定義有:
\(\left\{\begin{aligned} x^2 + y^2 = (x_1 - x)^2 + (y_1 - y)^2\\ x^2 + y^2 = (x_2 - x)^2 + (y_2 - y)^2 \end{aligned}\right.\)
\(\Rightarrow\left\{\begin{aligned} x^2 + y^2 = x_1^2 - 2x_1x + x^2 + y_1^2 - 2y_1y + y^2\\ x^2 + y^2 = x_2^2 - 2x_2x + x^2 + y_2^2 - 2y_2y + y^2 \end{aligned}\right.\)
\(\Rightarrow\left\{\begin{aligned} 0 = x_1^2 - 2x_1x + y_1^2 - 2y_1y\\ 0 = x_2^2 - 2x_2x + y_2^2 - 2y_2y \end{aligned}\right.\)
\(\Rightarrow\left\{\begin{aligned} 2x_1x + 2y_1y = x_1^2 + y_1^2\\ 2x_2x + 2y_2y = x_2^2 + y_2^2 \end{aligned}\right.\)
\(\Rightarrow\left\{\begin{aligned} x_1\cdot x + y_1\cdot y = \cfrac{x_1^2 + y_1^2}{2}\\ x_2\cdot x + y_2\cdot y = \cfrac{x_2^2 + y_2^2}{2} \end{aligned}\right.\)
到這里,得到了與向量法推導的一樣的結果\(♡\)。