cuda實現向量相加
博客最后附上整體代碼
如果有說的不對的地方還請前輩指出, 因為cuda真的接觸沒幾天
一些總結(建議看)
- cuda 並不純GPU在運行程序, 而是 cpu 與 gpu 一起在運行程序, cpu負責調度, gpu 負責運算, cpu稱為**HOST **, gpu 稱為 DEVICE
- 記住三個東西 grid block thread ,關系分別是 grid 包含多個 block , block 包含多個 thread
- 一個block中thread個數選取一般為32的整數倍, 原因和warp有關, 有興趣自行查閱
- 一個grid中block的個數選取和你的kernel函數以及thread數量有關, 舉個例子, int a[1000] 加上 int b[1000] , 你的thread為64, 那么, block = 1000/64 = 16個合適
- __global__函數一般表示一個內核函數,是一組由GPU執行的並行計算任務,由cpu調用
- __host__一般是由CPU調用,由CPU執行的函數,
- __device__一般表示由GPU中一個線程調用的函數
代碼實現
引入
#include <stdio.h>
#include <cuda_runtime.h>
kernel函數
__global__ void
vectorAdd(float *a, float *b, float *c, int num){
int i = blockDim.x * blockIdx.x + threadIdx.x; //vector is 1-dim, blockDim means the number of thread in a block
if(i < num){
c[i] = a[i] + b[i];
}
}
int i = blockDim.x * blockIdx.x + threadIdx.x;
這句代碼解釋一下:
blockDim.x 表示block的size行數(如果是一維的block的話,即一行有多少個thread)
blockIdx.x 表示當前運行到的第幾個block(一維grid的話,即該grid中第幾個block)
threadIdx.x 表示當前運行到的第幾個thread (一維的block的話.即該block中第幾個thread)
畫個圖解釋一下

比如上面這個圖的話, ABCDE各代表一個block, 總的為一個Grid, 每個block中有四個thread, 圖中我花了箭頭的也就是代表着第1個block中的第0個thread.
那么 i = blockDim.x * blockIdx.x + threadIdx.x 就是指 i = 4 * 1 + 0
申請內存空間與釋放
host中申請內存
float *a = (float *)malloc(size);
float *b = (float *)malloc(size);
float *c = (float *)malloc(size);
free(a);
free(b);
free(c);
device中申請內存
float *da = NULL;
float *db = NULL;
float *dc = NULL;
cudaMalloc((void **)&da, size);
cudaMalloc((void **)&db, size);
cudaMalloc((void **)&dc, size);
cudaFree(da);
cudaFree(db);
cudaFree(dc);
host中內存copy到device
cudaMemcpy(da,a,size,cudaMemcpyHostToDevice);
cudaMemcpy(db,b,size,cudaMemcpyHostToDevice);
cudaMemcpy(dc,c,size,cudaMemcpyHostToDevice);
上面的cudaMemcpyHostToDevice用於指定方向有四種關鍵詞
cudaMemcpyHostToDevice | cudaMemcpyHostToHost | cudaMemcpyDeviceToDevice | cudaMemcpyDeviceToHost
啟動 kernel函數
int threadPerBlock = 256;
int blockPerGrid = (num + threadPerBlock - 1)/threadPerBlock;
vectorAdd <<< blockPerGrid, threadPerBlock >>> (da,db,dc,num)
此處確定了block中的thread數量以及一個grid中block數量
利用kernel function <<< blockPerGrid, threadPerBlock>>> (paras,...) 來實現在cuda中運算
參考
源碼展示
#include <stdio.h>
#include <cuda_runtime.h>
// vectorAdd run in device
__global__ void
vectorAdd(float *a, float *b, float *c, int num){
int i = blockDim.x * blockIdx.x + threadIdx.x; //vector is 1-dim, blockDim means the number of thread in a block
if(i < num){
c[i] = a[i] + b[i];
}
}
// main run in host
int
main(void){
int num = 10000; // size of vector
size_t size = num * sizeof(float);
// host memery
float *a = (float *)malloc(size);
float *b = (float *)malloc(size);
float *c = (float *)malloc(size);
// init the vector
for(int i=1;i<num;++i){
a[i] = rand()/(float)RAND_MAX;
b[i] = rand()/(float)RAND_MAX;
}
// copy the host memery to device memery
float *da = NULL;
float *db = NULL;
float *dc = NULL;
cudaMalloc((void **)&da, size);
cudaMalloc((void **)&db, size);
cudaMalloc((void **)&dc, size);
cudaMemcpy(da,a,size,cudaMemcpyHostToDevice);
cudaMemcpy(db,b,size,cudaMemcpyHostToDevice);
cudaMemcpy(dc,c,size,cudaMemcpyHostToDevice);
// launch function add kernel
int threadPerBlock = 256;
int blockPerGrid = (num + threadPerBlock - 1)/threadPerBlock;
printf("threadPerBlock: %d \nblockPerGrid: %d \n",threadPerBlock,blockPerGrid);
vectorAdd <<< blockPerGrid, threadPerBlock >>> (da,db,dc,num);
//copy the device result to host
cudaMemcpy(c,dc,size,cudaMemcpyDeviceToHost);
// Verify that the result vector is correct
for (int i = 0; i < num; ++i){
if (fabs(a[i] + b[i] - c[i]) > 1e-5){
fprintf(stderr, "Result verification failed at element %d!\n", i);
return 0;
}
}
printf("Test PASSED\n");
// Free device global memory
cudaFree(da);
cudaFree(db);
cudaFree(dc);
// Free host memory
free(a);
free(b);
free(c);
printf("free is ok\n");
return 0;
}
