傳入兩個數組,在GPU中將兩個數組對應索引位置相加
#include "cuda_runtime.h" #include "device_launch_parameters.h" #include <iomanip> #include <iostream> #include <stdio.h> using namespace std; //檢測GPU bool CheckCUDA(void){ int count = 0; int i = 0; cudaGetDeviceCount(&count); if (count == 0) { printf("找不到支持CUDA的設備!\n"); return false; } cudaDeviceProp prop; for (i = 0; i < count; i++) { if (cudaGetDeviceProperties(&prop, i) == cudaSuccess) { if (prop.major >= 1) { break; } } } if (i == count) { printf("找不到支持CUDA的設備!\n"); return false; } cudaGetDeviceProperties(&prop, 0); printf("GPU is: %s\n", prop.name); cudaSetDevice(0); printf("CUDA initialized success.\n"); return true; }//使用一維數組相加 __global__ void addForOneDim(double *a, double *b, double *c, int N); //初始化一維數組 void InitOneDimArray(double *a, double b, int N); int main(){ //檢測GPU if (!CheckCUDA()){ cout << "No CUDA device."; return 0; }
//****數組相加************************************************************************************************************************ cout << "****************************************數組相加*********************************************************************" << endl; int N = 20; //定義數組大小 double *h_a_one, *h_b_one, *h_c_one; //聲明在CPU上使用的指針 double *d_a_one, *d_b_one, *d_c_one; //聲明在GPU上使用的指針 //為數組分配大小 h_a_one = new double[N]; h_b_one = new double[N]; h_c_one = new double[N]; cudaMalloc((void **)&d_a_one, sizeof(double)*N); //在GPU上分配內存空間 cudaMalloc((void **)&d_b_one, sizeof(double)*N); cudaMalloc((void **)&d_c_one, sizeof(double)*N); //為數組初始化 InitOneDimArray(h_a_one, 1.1, N); InitOneDimArray(h_b_one, 2.2, N); //使用GPU中分配的指針指向CPU中的數組 cudaMemcpy(d_a_one, h_a_one, sizeof(double)*N, cudaMemcpyHostToDevice); cudaMemcpy(d_b_one, h_b_one, sizeof(double)*N, cudaMemcpyHostToDevice); //調用核函數,使用1個線程塊N個線程 //addForOneDim<<<1, N>>>(h_a_one, h_b_one, d_c_one, N); //不能使用h_a_one和h_b_one,只能使用GPU上定義的指針,不然結果如圖一所示 addForOneDim<<<1, N>>>(d_a_one, d_b_one, d_c_one, N); //結果如圖二所示
//調用核函數,使用N個線程塊,每個線程塊中包含1個線程
//addForOneDim<<<N, 1>>>(d_a_one, d_b_one, d_c_one, N); //結果如圖三所示 //將GPU上計算好的結果返回到CPU上定義好的變量 cudaMemcpy(h_c_one, d_c_one, sizeof(double)*N, cudaMemcpyDeviceToHost); //打印結果 for (int i = 0; i < N; i++){ cout << h_a_one[i] << " + " << h_b_one[i] << " = " << h_c_one[i] << endl; } cout << endl << endl; system("pause"); return 0; } //使用一維數組相加 __global__ void addForOneDim(double *a, double *b, double *c, int N){ int tid = threadIdx.x; //線程索引,啟用1個線程塊,每個線程塊N個線程 if (tid < N){ c[tid] = a[tid] + b[tid]; } } //初始化一維數組 void InitOneDimArray(double *a, double b, int N){ for (int i = 0; i < N; i++){ a[i] = (i+1) * b; //cout << a[i] << endl; } }
圖一 (該圖是錯誤的)
圖二 (該圖是正確的)
圖三 (該圖是錯誤的)當在調用核函數時,
addForOneDim<<<N, 1>>>(d_a_one, d_b_one, d_c_one, N);
使用的索引是
int tid = threadIdx.x; //對應的是一個線程塊中每個線程id
正確的索引是
int tid = blockIdx.x; //對應的是每個線程塊id