基於ROS完成尋跡運動


安裝opencv功能包:

$ sudo apt-get install ros-indigo-version-opencv libopencv-dev python-opencv

 檢測指示線:

#!/usr/bin/env python
# coding=utf-8

import rospy
from sensor_msgs.msg import Image
import cv2, cv_bridge
import numpy
from geometry_msgs.msg import Twist


class Follower:
    def __init__(self):
        self.bridge = cv_bridge.CvBridge()
        cv2.namedWindow("window", 1)
        # 訂閱usb攝像頭
        self.image_sub = rospy.Subscriber("/usb_cam/image_raw", Image, self.image_callback)
        # self.image_sub = rospy.Subscriber("cv_bridge_image", Image, self.image_callback)
        # 訂閱深度相機
        # self.image_sub = rospy.Subscriber("/camera/rgb/image_raw", Image, self.image_callback)
        # self.image_sub = rospy.Subscriber("/camera/depth/image_raw", Image, self.image_callback)
     self.cmd_vel_pub = rospy.Publisher("cmd_vel", Twist, queue_size=1) self.twist = Twist() def image_callback(self, msg): image = self.bridge.imgmsg_to_cv2(msg, desired_encoding='bgr8') # hsv將RGB圖像分解成色調H,飽和度S,明度V hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) # 顏色的范圍 # 第二個參數:lower指的是圖像中低於這個lower的值,圖像值變為0 # 第三個參數:upper指的是圖像中高於這個upper的值,圖像值變為0 # 而在lower~upper之間的值變成255 lower_black = numpy.array([0, 0, 0]) upper_black = numpy.array([50, 50, 50]) mask = cv2.inRange(hsv, lower_black, upper_black) masked = cv2.bitwise_and(image, image, mask=mask) # 在圖像某處繪制一個指示,因為只考慮20行寬的圖像,所以使用numpy切片將以外的空間區域清空 h, w, d = image.shape search_top = 3*h/4 search_bot = search_top + 20 mask[0:search_top, 0:w] = 0 mask[search_bot:h, 0:w] = 0 # 計算mask圖像的重心,即幾何中心 M = cv2.moments(mask) if M['m00'] > 0: cx = int(M['m10']/M['m00']) cy = int(M['m01']/M['m00']) cv2.circle(image, (cx, cy), 20, (0, 0, 255), -1)          if not cv2.circle: self.twist.linear.x = -0.5 self.twist.angular.z = 0.1 # 計算圖像中心線和目標指示線中心的距離 erro = cx - w/2 self.twist.linear.x = 0.5 # self.twist.angular.z = -float(erro)/100 self.twist.angular.z = 0 self.cmd_vel_pub.publish(self.twist) cv2.imshow("window", image) cv2.waitKey(3) rospy.init_node("opencv") follower = Follower() rospy.spin()

  使用opencv的cvtColor()函數將RGB圖像轉換成HSV圖像,使用numpy在HSV顏色空間中創建一個所需的色調范圍,然后用inRange()函數根據色調范圍生成一個二值圖像。

  跟蹤指示線的策略:只考慮圖像1/3高處的20行寬的部分,在檢測的圖像中心繪制一個圓點用來標記。

 

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM