MIM攻擊原論文地址——https://arxiv.org/pdf/1710.06081.pdf
1.MIM攻擊的原理
MIM攻擊全稱是 Momentum Iterative Method,其實這也是一種類似於PGD的基於梯度的迭代攻擊算法。它的本質就是,在進行迭代的時候,每一輪的擾動不僅與當前的梯度方向有關,還與之前算出來的梯度方向相關。其中的衰減因子就是用來調節相關度的,decay_factor在(0,1)之間,decay_factor越小,那么迭代輪數靠前算出來的梯度對當前的梯度方向影響越小。其實仔細想想,這樣做也很有道理,由於之前的梯度對后面的迭代也有影響,那么這使得,迭代的方向不會跑偏,使得總體的大方向是對的。到目前為止都是筆者對MIM比較感性的認識,下面貼出論文中比較學術的觀點。
其實為了加速梯度下降,通過累積損失函數的梯度方向上的矢量,從而(1)穩定更新(2)有助於通過 narrow valleys, small humps and poor local minima or maxima.(專業名詞不知道怎么翻譯,可以腦補函數圖像,大致意思就是,可以有效避免局部最優)
是decay_factor,另外,在原論文中,每一次迭代對x的導數是直接算的1-范數,然后求平均,但在各個算法庫以及論文實現的補充中,並沒有求平均,估計這個對結果影響不太大。
2.代碼實現(直接把advertorch里的代碼貼過來了)

1 class MomentumIterativeAttack(Attack, LabelMixin): 2 """ 3 The L-inf projected gradient descent attack (Dong et al. 2017). 4 The attack performs nb_iter steps of size eps_iter, while always staying 5 within eps from the initial point. The optimization is performed with 6 momentum. 7 Paper: https://arxiv.org/pdf/1710.06081.pdf 8 """ 9 10 def __init__( 11 self, predict, loss_fn=None, eps=0.3, nb_iter=40, decay_factor=1., 12 eps_iter=0.01, clip_min=0., clip_max=1., targeted=False): 13 """ 14 Create an instance of the MomentumIterativeAttack. 15 16 :param predict: forward pass function. 17 :param loss_fn: loss function. 18 :param eps: maximum distortion. 19 :param nb_iter: number of iterations 20 :param decay_factor: momentum decay factor. 21 :param eps_iter: attack step size. 22 :param clip_min: mininum value per input dimension. 23 :param clip_max: maximum value per input dimension. 24 :param targeted: if the attack is targeted. 25 """ 26 super(MomentumIterativeAttack, self).__init__( 27 predict, loss_fn, clip_min, clip_max) 28 self.eps = eps 29 self.nb_iter = nb_iter 30 self.decay_factor = decay_factor 31 self.eps_iter = eps_iter 32 self.targeted = targeted 33 if self.loss_fn is None: 34 self.loss_fn = nn.CrossEntropyLoss(reduction="sum") 35 36 def perturb(self, x, y=None): 37 """ 38 Given examples (x, y), returns their adversarial counterparts with 39 an attack length of eps. 40 41 :param x: input tensor. 42 :param y: label tensor. 43 - if None and self.targeted=False, compute y as predicted 44 labels. 45 - if self.targeted=True, then y must be the targeted labels. 46 :return: tensor containing perturbed inputs. 47 """ 48 x, y = self._verify_and_process_inputs(x, y) 49 50 delta = torch.zeros_like(x) 51 g = torch.zeros_like(x) 52 53 delta = nn.Parameter(delta) 54 55 for i in range(self.nb_iter): 56 57 if delta.grad is not None: 58 delta.grad.detach_() 59 delta.grad.zero_() 60 61 imgadv = x + delta 62 outputs = self.predict(imgadv) 63 loss = self.loss_fn(outputs, y) 64 if self.targeted: 65 loss = -loss 66 loss.backward() 67 68 g = self.decay_factor * g + normalize_by_pnorm( 69 delta.grad.data, p=1) 70 # according to the paper it should be .sum(), but in their 71 # implementations (both cleverhans and the link from the paper) 72 # it is .mean(), but actually it shouldn't matter 73 74 delta.data += self.eps_iter * torch.sign(g) 75 # delta.data += self.eps / self.nb_iter * torch.sign(g) 76 77 delta.data = clamp( 78 delta.data, min=-self.eps, max=self.eps) 79 delta.data = clamp( 80 x + delta.data, min=self.clip_min, max=self.clip_max) - x 81 82 rval = x + delta.data 83 return rval
個人覺得,advertorch中在迭代過程中,應該是對imgadv求導,而不是對delta求導,筆者查看了foolbox和cleverhans的實現,都是對每一輪的對抗樣本求導,大家自己實現的時候可以改一下。