肘部法則


 

 

 

import pandas as pd
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
 
df_features = pd.read_csv(r'11111111.csv',encoding='gbk') # 讀入數據
#print(df_features)
'利用SSE選擇k'
SSE = []  # 存放每次結果的誤差平方和
for k in range(1,9):
    estimator = KMeans(n_clusters=k)  # 構造聚類器
    estimator.fit(df_features[['0','1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19','20','21','22','23','24','25','26','27','28','29','30','31','32']])
    SSE.append(estimator.inertia_) # estimator.inertia_獲取聚類准則的總和
X = range(1,9)
plt.xlabel('k')
plt.ylabel('SSE')
plt.plot(X,SSE,'o-')
plt.show()

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM