1.amcl的cmakelists.txt文件
add_executable(amcl src/amcl_node.cpp)
target_link_libraries(amcl
amcl_sensors amcl_map amcl_pf
${Boost_LIBRARIES}
${catkin_LIBRARIES}
)
該項目生成一個amcl節點;以及amcl_sensors amcl_map amcl_pf三個庫
2.amcl node
2.1 類結構
class amcl_node { public: amcl_node(); ~amcl_node(); void runFromBag(const std::string &in_bag_fn);//根據信息記錄包來運行amcl int process(); void savePoseToServer();////把位姿信息保存到參數服務器 private: std::shared_ptr<tf2_ros::TransformBroadcaster> tfb_; std::shared_ptr<tf2_ros::TransformListener> tfl_; std::shared_ptr<tf2_ros::Buffer> tf_; bool sent_first_transform_; tf2::Transform latest_tf_; bool latest_tf_valid_; static pf_vector_t uniformPoseGenerator(void* arg); static std::vector<std::pair<int, int> > free_space_indices; // Callbacks bool globalLocalizationCallback(std_srvs::Empty::Request& req, std_srvs::Empty::Response& res); bool nomotionUpdateCallback(std_srvs::Empty::Request& req, std_srvs::Empty::Response& res); bool setMapCallback(nav_msgs::SetMap::Request& req, nav_msgs::SetMap::Response& res); void laserReceived(const sensor_msgs::LaserScanConstPtr& laser_scan); void initialPoseReceived(const geometry_msgs::PoseWithCovarianceStampedConstPtr& msg); void handleInitialPoseMessage(const geometry_msgs::PoseWithCovarianceStamped& msg); void mapReceived(const nav_msgs::OccupancyGridConstPtr& msg); void handleMapMessage(const nav_msgs::OccupancyGrid& msg); void freeMapDependentMemory(); map_t* convertMap(const nav_msgs::OccupancyGrid& map_msg); void updatePoseFromServer(); void applyInitialPose(); //parameter for what odom to use std::string odom_frame_id_; //paramater to store latest odom pose geometry_msgs::PoseStamped latest_odom_pose_; //parameter for what base to use std::string base_frame_id_; std::string global_frame_id_; bool use_map_topic_; bool first_map_only_; ros::Duration gui_publish_period; ros::Time save_pose_last_time; ros::Duration save_pose_period; geometry_msgs::PoseWithCovarianceStamped last_published_pose; map_t* map_; char* mapdata; int sx, sy; double resolution; message_filters::Subscriber<sensor_msgs::LaserScan>* laser_scan_sub_; tf2_ros::MessageFilter<sensor_msgs::LaserScan>* laser_scan_filter_; ros::Subscriber initial_pose_sub_; std::vector< AMCLLaser* > lasers_; std::vector< bool > lasers_update_; std::map< std::string, int > frame_to_laser_; // Particle filter pf_t *pf_; double pf_err_, pf_z_; bool pf_init_; pf_vector_t pf_odom_pose_; double d_thresh_, a_thresh_; int resample_interval_; int resample_count_; double laser_min_range_; double laser_max_range_; //Nomotion update control bool m_force_update; // used to temporarily let amcl update samples even when no motion occurs... AMCLOdom* odom_; AMCLLaser* laser_; ros::Duration cloud_pub_interval; ros::Time last_cloud_pub_time; // For slowing play-back when reading directly from a bag file ros::WallDuration bag_scan_period_; void requestMap();//請求服務static_server提供map,然后調用handleMapMessage處理地圖信息 // Helper to get odometric pose from transform system bool getOdomPose(geometry_msgs::PoseStamped& pose, double& x, double& y, double& yaw, const ros::Time& t, const std::string& f); //time for tolerance on the published transform, //basically defines how long a map->odom transform is good for ros::Duration transform_tolerance_; ros::NodeHandle nh_; ros::NodeHandle private_nh_; ros::Publisher pose_pub_; ros::Publisher particlecloud_pub_; ros::ServiceServer global_loc_srv_; ros::ServiceServer nomotion_update_srv_; //to let amcl update samples without requiring motion ros::ServiceServer set_map_srv_; ros::Subscriber initial_pose_sub_old_; ros::Subscriber map_sub_; amcl_hyp_t* initial_pose_hyp_; bool first_map_received_; bool first_reconfigure_call_; boost::recursive_mutex configuration_mutex_; dynamic_reconfigure::Server<amcl::AMCLConfig> *dsrv_; amcl::AMCLConfig default_config_; ros::Timer check_laser_timer_; int max_beams_, min_particles_, max_particles_; double alpha1_, alpha2_, alpha3_, alpha4_, alpha5_; double alpha_slow_, alpha_fast_; double z_hit_, z_short_, z_max_, z_rand_, sigma_hit_, lambda_short_; //beam skip related params bool do_beamskip_; double beam_skip_distance_, beam_skip_threshold_, beam_skip_error_threshold_; double laser_likelihood_max_dist_; odom_model_t odom_model_type_; double init_pose_[3]; double init_cov_[3]; laser_model_t laser_model_type_; bool tf_broadcast_; void reconfigureCB(amcl::AMCLConfig &config, uint32_t level); ros::Time last_laser_received_ts_; ros::Duration laser_check_interval_; void checkLaserReceived(const ros::TimerEvent& event); };
2.2 main函數
int main(int argc, char** argv) { ros::init(argc, argv, "amcl"); ros::NodeHandle nh; // Override default sigint handler signal(SIGINT, sigintHandler); // Make our node available to sigintHandler amcl_node_ptr.reset(new AmclNode()); if (argc == 1) { // run using ROS input ros::spin(); } else if ((argc == 3) && (std::string(argv[1]) == "--run-from-bag")) { amcl_node_ptr->runFromBag(argv[2]); } // Without this, our boost locks are not shut down nicely amcl_node_ptr.reset(); // To quote Morgan, Hooray! return(0); }
2.3 關鍵步驟
0.構造函數AmclNode()
——>參數配置:粒子濾波參數,運動模型參數,觀測模型參數等
——>updatePoseFromServer():從參數服務器中獲取初始位姿及初始分布
——>pose和particle息發布:
- amcl_pose: geometry_msgs::PoseWithCovarianceStamped,后驗位姿+一個6*6的協方差矩陣(xyz+三個轉角)
- particlecloud:geometry_msgs::PoseArray,粒子位姿的數組
——>創建服務:
- global_localization:&AmclNode::globalLocalizationCallback,這里是沒有給定初始位姿的情況下在全局范圍內初始化粒子位姿,該Callback調用pf_init_model,然后調用AmclNode::uniformPoseGenerator在地圖的free點隨機生成pf->max_samples個粒子
- request_nomotion_update:&AmclNode::nomotionUpdateCallback沒運動模型更新的情況下也暫時更新粒子群
- set_map:&AmclNode::setMapCallback://handleMapMessage()進行地圖轉換 ,記錄free space ,以及初始化pf_t 結構體,實例化運動模型(odom)和觀測模型(laser); //handleInitialPoseMessage(req.initial_pose); 根據接收的初始位姿消息,在該位姿附近高斯采樣重新生成粒子集
- dynamic_reconfigure::Server動態參數配置器。
——>訂閱話題:
- scan_topic_:sensor_msgs::LaserScan,AmclNode::laserReceived():回調函數laserReceived是粒子濾波主要過程,根據激光掃描數據更新粒子
- initialpose:AmclNode::initialPoseReceived():這個應該就是訂閱rviz中給的初始化位姿,調用AmclNode::handleInitialPoseMessage,只接受global_frame_id_(一般為map)的坐標,並重新生成粒子。在接收到的初始位姿附近采樣生成 粒子集。
- map:AmclNode::mapReceived這個在use_map_topic_的時候才訂閱,否則requestMap();我這里也沒有訂閱,因為只使用了一個固定的地圖。
——>一個15秒的定時器:AmclNode::checkLaserReceived,檢查 15上一次收到激光雷達數據至今是否超過15秒,如超過則報錯。
1.requestmap()
——>requestMap:一直請求服務static_map直到成功
——>handleMapMessage(): 1.將受到的msg轉換成標准地圖,0->-1(不是障礙);100->+1(障礙);else->0(不明)
2.提取非障礙部分,列入Vector類型的free_space_indices
3.創建粒子濾波器——>updatePoseFromServer()——>初始化粒子濾波器——>初始化傳感器(odom,laser)——>applyInitialPose()
2.laserReceived()
——>獲取laser對應於baselink的坐標
——>獲取baselink對應於odom的坐標
——>根據里程計的變化值+高斯噪音 更新 pf_t中samples的內里程計值(運動模型)
odom->updateAction()
——>根據當前雷達數據更新各里程計對應的權值weights
laser_[laser_index]->updateSensor()
——>得到濾波結果后,分別在話題/amcl_pose和/ particlecloud上發布位姿和粒子集
3.主要過程
- 構造時初始化,從參數服務器中獲取數據初始化各類參數;(接收地圖設置,gui顯示發布頻率,保存位姿到參數服務器頻率,laser測距范圍及其概率模型參數,odom概率模型參數,粒子濾波及kld重采樣參數,從參數服務器獲取初始位姿,然后初始化了訂閱者,發布者,服務)
- 地圖加載,兩種方式(1.訂閱/map話題2.請求服務得到地圖),得到地圖后也有個初始化過程(將消息類型的地圖轉換為定義的map類數據,統計free狀態的柵格索引,從參數服務器獲取位姿信息,並初始化粒子濾波器pf_,初始化odom模型參數,初始化laser模型參數)
- 粒子濾波,訂閱laser_scan的回調函數中處理,得到結果后發布位姿和粒子集
- initialpose的回調,接收到初始位姿消息后,融入最新的里程改變,然后在該位姿附近重新生成粒子集
4.主要數據類型與算法
4.1 pf
1. eig3.c
實現的是一個3x3對稱矩陣的特征值與特征向量的計算,首先用Householder矩陣將矩陣變換為三對角矩陣,然后使用ql分解迭代計算 。
2. pf_kdtree.c定義了一個kdtree以及維護方法來管理所有粒子 :創建、銷毀、清除元素、插入元素、計算概率估計、比較、查找、
typedef struct { // Cell size double size[3]; // The root node of the tree pf_kdtree_node_t *root; // The number of nodes in the tree int node_count, node_max_count; pf_kdtree_node_t *nodes; // The number of leaf nodes in the tree int leaf_count; } pf_kdtree_t;
3.pf_pdf.c主要定義了一個從給定pdf中采樣粒子的方法
4.pf_vector.c定義了三維列向量和三維矩陣和基本的運算方法:加、減、全局和局部坐標系變換、是否NAN或INF
5.pf.c定義了粒子單元pf_sample_t,粒子集pf_sample_set_t,粒子濾波pf_t的數據類型,還有一個 pf_cluster_t表示粒子集的聚類信息,關鍵函數主要包含如下三個,分別對應粒子濾波中的運動更新,觀測更新,重采樣三個過程
4.2 sensors
1. amcl_sencor.cpp
——>定義了基類,以虛函數InitSensor()、UpdateSensor()、UpdateAction()提供接口
2. amcl_laser.cpp
——>定義了激光數據類型,三種觀測更新模型(詳細見<<概率機器人>>),具體實現了UpdateSensor,用於計算粒子權值
3. amcl_odom.cpp
——>具體實現了基類定義的UpdateAction函數,用於根據運動更新粒子,定義了兩種運動模型,差分和全向
4.3 map
——>map中主要定義了概率柵格地圖的數據表示
typedef struct { int occ_state;// Occupancy state (-1 = free, 0 = unknown, +1 = occ) double occ_dist;// Distance to the nearest occupied cell } map_cell_t;
// Description for a map typedef struct { // Map origin; the map is a viewport onto a conceptual larger map. double origin_x, origin_y; // Map scale (m/cell) double scale; // Map dimensions (number of cells) int size_x, size_y; // The map data, stored as a grid map_cell_t *cells; // Max distance at which we care about obstacles, for constructing // likelihood field double max_occ_dist; } map_t;
部分參考:https://blog.csdn.net/qq_27753669/article/details/80011156