1.2 矩陣和向量的運算
1.介紹
eigen給矩陣和向量的算術運算提供重載的c++算術運算符例如+,-,*或這一些點乘dot(),叉乘cross()等等。對於矩陣類(矩陣和向量,之后統稱為矩陣
類),算術運算只重載線性代數的運算。例如matrix1*matrix2表示矩陣的乘法,同時向量+標量是不允許的!如果你想進行所有的數組算術運算,請看下
一節!
2.加減法
因為eigen庫無法自動進行類型轉換,因此矩陣類的加減法必須是兩個同類型同維度的矩陣類相加減。
這些運算有:
雙目運算符:+,a+b
雙目運算符:-,a-b
單目運算符:-,-a
復合運算符:+=,a+=b
復合運算符:-=,a-=b
例子:
#include <iostream> #include <Eigen/Dense> using namespace Eigen; int main() { Matrix2d a; a << 1, 2, 3, 4; MatrixXd b(2,2); b << 2, 3, 1, 4; std::cout << "a + b =\n" << a + b << std::endl; std::cout << "a - b =\n" << a - b << std::endl; std::cout << "Doing a += b;" << std::endl; a += b; std::cout << "Now a =\n" << a << std::endl; Vector3d v(1,2,3); Vector3d w(1,0,0); std::cout << "-v + w - v =\n" << -v + w - v << std::endl; }
3.標量乘法和除法
標量的乘除法非常簡單:
雙目運算符:*,matrix*scalar
雙目運算符:*,scalar*matrix
即乘法滿足交換律
雙目運算符:/,matrix/scalar
矩陣中的每一個元素除以標量
復合運算符:*=,matrix*=scalar
復合運算符:/=,matrix/=scalar
#include <iostream> #include <Eigen/Dense> using namespace Eigen; int main() { Matrix2d a; a << 1, 2, 3, 4; Vector3d v(1,2,3); std::cout << "a * 2.5 =\n" << a * 2.5 << std::endl; std::cout << "0.1 * v =\n" << 0.1 * v << std::endl; std::cout << "Doing v *= 2;" << std::endl; v *= 2; std::cout << "Now v =\n" << v << std::endl; } //output a * 2.5 = 2.5 5 7.5 10 0.1 * v = 0.1 0.2 0.3 Doing v *= 2; Now v = 2 4 6
4.對表達式模板的注釋
在eigen中,+號算術運算符不會通過自身函數執行任何計算,它們只是返回一個表達式,來描述計算的過程。實際的計算是在執行等號時,整個表達式開
始進行計算。
比如:
VectorXf a(50), b(50), c(50), d(50); ... a = 3*b + 4*c + 5*d;
eigen把它編譯成一個循環,這樣數組只執行依次運算,就像下列循環一樣:
for(int i = 0; i < 50; ++i) a[i] = 3*b[i] + 4*c[i] + 5*d[i];
因此,在eigen 中,你不必擔心使用相當大的算術運算表達式,它會提供給eigen更多優化代碼的機會。
5.轉置和共軛
矩陣類的成員函數transpose(),conjugate(),adjoint(),分別對應矩陣的轉置 ,共軛
,共軛轉置矩陣
,特此說明adjoint()並不表示伴隨矩
陣,而是共軛轉置矩陣!!!!
例子:
MatrixXcf a = MatrixXcf::Random(2,2);//生成隨機的復數類型矩陣 cout << "Here is the matrix a\n" << a << endl; cout << "Here is the matrix a^T\n" << a.transpose() << endl; cout << "Here is the conjugate of a\n" << a.conjugate() << endl; cout << "Here is the matrix a^*\n" << a.adjoint() << endl; //output Here is the matrix a (-0.211,0.68) (-0.605,0.823) (0.597,0.566) (0.536,-0.33) Here is the matrix a^T (-0.211,0.68) (0.597,0.566) (-0.605,0.823) (0.536,-0.33) Here is the conjugate of a (-0.211,-0.68) (-0.605,-0.823) (0.597,-0.566) (0.536,0.33) Here is the matrix a^* (-0.211,-0.68) (0.597,-0.566) (-0.605,-0.823) (0.536,0.33)
對於實矩陣,是沒有共軛矩陣的,同時它的共軛轉置矩陣(adjoint())等於它的轉置(transpose()).
對於基本的算術運算,轉置和共軛轉置函數返回的是矩陣的引用,而不會實際轉換矩陣對象。如果你對b做b=a.transpose(),這個將在求轉置矩陣的同時,
將結果賦值給b。但是如果將a=a.transpose(),eigen將會在計算a的轉置完成之前開始賦值結果給a,因此,這樣的賦值將不會將a替換成它的轉置,而是:
Matrix2i a; a << 1, 2, 3, 4; cout << "Here is the matrix a:\n" << a << endl; a = a.transpose(); // !!! do NOT do this !!! cout << "and the result of the aliasing effect:\n" << a << endl; //output Here is the matrix a: 1 2 3 4 and the result of the aliasing effect: 1 2 2 4
結果不再是a的轉置,而是發生了混疊(aliasing issue).在調試模式中,在到達斷點之前,這樣的錯誤很容易被檢測到。
為了將a替換為a的轉置矩陣,可以使用transposeInPlace()函數:
MatrixXf a(2,3); a << 1, 2, 3, 4, 5, 6; cout << "Here is the initial matrix a:\n" << a << endl; a.transposeInPlace(); cout << "and after being transposed:\n" << a << endl; //output Here is the initial matrix a: 1 2 3 4 5 6 and after being transposed: 1 4 2 5 3 6
同樣地,對於共軛轉置矩陣(adjoint())也有類似的成員函數(adjointInPlace()).
6.矩陣-矩陣乘法和矩陣-向量乘法
矩陣乘法使用*運算符;
雙目運算符:a*b
復合運算符:a*=b
#include <iostream> #include <Eigen/Dense> using namespace Eigen; int main() { Matrix2d mat; mat << 1, 2, 3, 4; Vector2d u(-1,1), v(2,0); std::cout << "Here is mat*mat:\n" << mat*mat << std::endl; std::cout << "Here is mat*u:\n" << mat*u << std::endl; std::cout << "Here is u^T*mat:\n" << u.transpose()*mat << std::endl; std::cout << "Here is u^T*v:\n" << u.transpose()*v << std::endl; std::cout << "Here is u*v^T:\n" << u*v.transpose() << std::endl; std::cout << "Let's multiply mat by itself" << std::endl; mat = mat*mat; std::cout << "Now mat is mat:\n" << mat << std::endl; } //output Here is mat*mat: 7 10 15 22 Here is mat*u: 1 1 Here is u^T*mat: 2 2 Here is u^T*v: -2 Here is u*v^T: -2 -0 2 0 Let's multiply mat by itself Now mat is mat: 7 10 15 22
說明,前述表達式m=m*m可能會引起混疊的問題,但是對於矩陣乘法而言,不必擔心:eigen將矩陣的乘法看作一種特殊的情況,它引入一個臨時變量,
因此它將編譯成以下代碼:
tmp = m*m;
m = tmp;
如果你想讓矩陣乘法安全的進行計算而沒有混疊問題,你可以使用noalias()成員函數來避免臨時變量的問題,例如:
c.noalias() += a * b;
7.點乘和叉乘
點乘dot(),叉乘cross().點乘也可以使用u.adjoint()*v。
例子:
#include <iostream> #include <Eigen/Dense> using namespace Eigen; using namespace std; int main() { Vector3d v(1,2,3); Vector3d w(0,1,2); cout << "Dot product: " << v.dot(w) << endl;//點乘 double dp = v.adjoint()*w; // automatic conversion of the inner product to a scalar cout << "Dot product via a matrix product: " << dp << endl; cout << "Cross product:\n" << v.cross(w) << endl;//叉乘 } //output Dot product: 8 Dot product via a matrix product: 8 Cross product: 1 -2 1
注意:叉乘只能用於維數為3的向量,點乘使用於任何維數的向量。當使用復數時,第一個變量是共軛線性運算,第二個是線性運算。
8.基本的算術化簡計算
eigen提供一些簡化計算將給定的矩陣或向量編程單個值,比如對矩陣的所有元素求和sum(),求積prod(),求最大值maxCoeff()和求最小值
minCoeff():
#include <iostream> #include <Eigen/Dense> using namespace std; int main() { Eigen::Matrix2d mat; mat << 1, 2, 3, 4; cout << "Here is mat.sum(): " << mat.sum() << endl;//對矩陣所有元素求和 cout << "Here is mat.prod(): " << mat.prod() << endl;//對矩陣所有元素求積 cout << "Here is mat.mean(): " << mat.mean() << endl;//對矩陣所有元素求平均值 cout << "Here is mat.minCoeff(): " << mat.minCoeff() << endl;//取矩陣的元素最小值 cout << "Here is mat.maxCoeff(): " << mat.maxCoeff() << endl;//取矩陣元素的最大值 cout << "Here is mat.trace(): " << mat.trace() << endl;//取矩陣元素的跡 } //output Here is mat.sum(): 10 Here is mat.prod(): 24 Here is mat.mean(): 2.5 Here is mat.minCoeff(): 1 Here is mat.maxCoeff(): 4 Here is mat.trace(): 5
矩陣的跡返回的是矩陣對角線元素的和,等價於a.diagonal().sum().
同時求最大值和最小值的函數可以接受引用的實參,來表示其最大最小值的行數和列數:
Matrix3f m = Matrix3f::Random(); std::ptrdiff_t i, j;//i,j是一個整型類型 float minOfM = m.minCoeff(&i,&j);//矩陣可以接受兩個引用參數 cout << "Here is the matrix m:\n" << m << endl; cout << "Its minimum coefficient (" << minOfM << ") is at position (" << i << "," << j << ")\n\n";//輸出最小值所在行數列數 RowVector4i v = RowVector4i::Random(); int maxOfV = v.maxCoeff(&i);//向量只接受一個引用參數 cout << "Here is the vector v: " << v << endl; cout << "Its maximum coefficient (" << maxOfV << ") is at position " << i << endl;//輸出最大值所在列數 //output Here is the matrix m: 0.68 0.597 -0.33 -0.211 0.823 0.536 0.566 -0.605 -0.444 Its minimum coefficient (-0.605) is at position (2,1) Here is the vector v: 1 0 3 -3 Its maximum coefficient (3) is at position 2
9.運算的有效性
eigen庫會檢查你定義的運算。通常它在編譯時檢查並產生錯誤信息。這些錯誤信息可能很長很丑,但是eigen將重要信息用大寫字母來顯示出,例如:
Matrix3f m; Vector4f v; v = m*v; // Compile-time error: YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES
在許多情況下,當使用動態綁定矩陣時,編譯器將不會在編譯時檢查,eigen將會在運行時檢查,yejiuis說程序有可能因為不合法的運算而中斷。
MatrixXf m(3,3); VectorXf v(4); v = m * v; // Run-time assertion failure here: "invalid matrix product"