用Python學分析 - 正態分布


正態分布(Normal Distribution)

1、正態分布是一種連續分布,其函數可以在實線上的任何地方取值。

2、正態分布由兩個參數描述:分布的平均值μ和方差σ2

3、正態分布的取值可以從負無窮到正無窮。

3、Z-score 是非標准正態分布標准化后的x 即 z = (x−μ) / σ

#顯示標准正態分布曲線圖

 1 import numpy as np
 2 import scipy.stats as stats
 3 import matplotlib.pyplot as plt
 4 
 5 mu = 0 # mean
 6 sigma = 1 # standart deviation
 7 x = np.arange(-5, 5, 0.1)
 8 y = stats.norm.pdf(x, 0, 1)
 9 print('Chart 1:')
10 plt.plot(x, y)
11 plt.title('Normal: $\mu$ = {0:.1f}, $\sigma^2$ = {1:0.1f}'.format(mu, sigma))
12 plt.xlabel('x')
13 plt.ylabel('Probability density') # probobility of observing each of these observations
14 plt.show()
View Code

標准正態分布表

表頭的橫向表示小數點后第二位,表頭的縱向則為整數部分以及小數點后第一位;兩者聯合作為完整的x,坐標軸的橫軸

# 顯示標准正態分布表格

 1 import numpy as np
 2 from scipy.stats import norm
 3 
 4 n = 100
 5 x = np.arange(0, 0.1, 0.01)
 6 y = np.arange(0, 3.1, 0.1)
 7 print('z表       ', end = '')
 8 for j in x:
 9     print( str(j), end='    ')
10 print()
11 for i in y:
12     print( i , end = ':   ')
13     for j in x:
14         z = norm.cdf(j+i)
15         print('{0:.4f}'.format(z), end = '  ')
16     print('')
View Code

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM